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Abstract 

Background:  Mechanical Ventilation (MV) is a complex and central treatment process in the care of critically ill 
patients. It influences acid–base balance and can also cause prognostically relevant biotrauma by generating forces 
and liberating reactive oxygen species, negatively affecting outcomes. In this work we evaluate the use of a Recurrent 
Neural Network (RNN) modelling to predict outcomes of mechanically ventilated patients, using standard mechanical 
ventilation parameters.

Methods:  We performed our analysis on VENTILA dataset, an observational, prospective, international, multi-centre 
study, performed to investigate the effect of baseline characteristics and management changes over time on the all-
cause mortality rate in mechanically ventilated patients in ICU. Our cohort includes 12,596 adult patients older than 
18, associated with 12,755 distinct admissions in ICUs across 37 countries and receiving invasive and non-invasive 
mechanical ventilation. We carry out four different analysis. Initially we select typical mechanical ventilation param‑
eters and evaluate the machine learning model on both, the overall cohort and a subgroup of patients admitted with 
respiratory disorders. Furthermore, we carry out sensitivity analysis to evaluate whether inclusion of variables related 
to the function of other organs, improve the predictive performance of the model for both the overall cohort as well 
as the subgroup of patients with respiratory disorders.

Results:  Predictive performance of RNN-based model was higher with Area Under the Receiver Operating Charac‑
teristic (ROC) Curve (AUC) of 0.72 (± 0.01) and Average Precision (AP) of 0.57 (± 0.01) in comparison to RF and LR for 
the overall patient dataset. Higher predictive performance was recorded in the subgroup of patients admitted with 
respiratory disorders with AUC of 0.75 (± 0.02) and AP of 0.65 (± 0.03). Inclusion of function of other organs further 
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Background
In the field of medicine, the use of computer-based 
algorithms for aiding diagnostic as well as therapeu-
tic decisions has become a highly popular matter of 
often controversial discussions, whereas the question 
whether Artificial Intelligence (AI) might replace physi-
cians someday arises time and again [1]. Even though it 
seems unlikely that AI will ever fully replace professional 
health care workers, it is advantageous to use computing 
power to analyse "big data" for the benefit of the patients. 
To solve complex mathematical problems, Deep Learn-
ing (DL) methods based on recurrent neural networks 
are used nowadays, especially in problems with tem-
poral dependencies. In RNN weighted input values get 
summated and repeatedly updated to generate an out-
put which best reflects the outcome of interest [2]. Fur-
thermore, a memory function is generated by recurrent 
feedback mechanisms. The Long Short-Term Memory 
model (LSTM) by Hochreiter and Schmidhuber solves 
complex tasks by a constant error flow (“constant error 
carousels”) within memory cells with an opening and 
closing gate function, thereby enabling a quasi-sustained 
short-term memory [3]. Since their introduction, RNNs 
and especially LSTMs have been used for various tasks 
like handwriting recognition or speech recognition and 
in diverse healthcare applications [4]. Machine Learning 
(ML) already influences daily life more than we might be 
aware and it is indispensable for the technology industry.

In critical care medicine, the concept of ML for analys-
ing complex and often highly heterogeneous patient col-
lectives seems reasonable under various circumstances 
[5]. Different studies have evaluated the use of ML for 
the treatment of sepsis, assessing patient prognosis and/
or risk for prolonged clinical courses and several other 
applications [6]. Regarding assessment of patients on 
mechanical ventilation and/ or prognostication of ICU-
patients by AI, various studies were conducted that dem-
onstrated that ML can be used as a prognostication tool 
for ICU-mortality [7, 8]. Parreco et al. were able to reli-
ably identify patients at risk for tracheostomy and pro-
longed MV in their study on 20,262 ICU stays out of the 
MIMIC-III database [9]. Chen et  al. were able to detect 

ventilator-associated pneumonia in patients on MV by 
using ML for the analysis of sensor arrays on exhaled 
breath samples [10]. Different other studies with prom-
ising results have been conducted in this field, which 
makes a future use of ML in clinical daily routine on the 
ICU likely.

Objectives
We aim to investigate performance of these methods in 
a multi-centre cohort of patients in mechanical ventila-
tion. In this investigation we rely on the VENTILA study 
group, a prospective, observational, international multi-
centre cohort study that enrols patients on mechanical 
ventilation during a 28-day follow-up period. It com-
prises a large patient collective, generating a large amount 
of data and consequently rendering it suitable for the use 
of machine-learning methods. Mechanical ventilation is a 
complex and central treatment process in the care of crit-
ically ill patients. Not only represents a key element for 
treating respiratory insufficiency, but also significantly 
influences acid–base balance and can also cause prog-
nostically relevant biotrauma by generating forces and 
liberating reactive oxygen species [11, 12]. It therefore 
represents a general outcome-relevant process for ICU 
patients. We aimed to evaluate the use of a LSTM-based 
model on a subgroup of mechanically ventilated critically 
ill patients out of the VENTILA study group to predict 
the outcome by using six standard mechanical ventilation 
parameters in our model. We follow STROBE guidelines 
[13] for reporting observational studies and provide the 
checklist of prediction model development and valida-
tion as a supplementary material.

Methods
Setting and data sources
VENTILA cohort dataset is a combination of four obser-
vational, prospective, international multi-center studies 
[14–16], performed to investigate the effect of baseline 
characteristics and management changes over time on 
the all-cause mortality rate in mechanically ventilated 
patients in ICU. VENTILA cohort includes adult patients 
older than 18, admitted to ICU receiving invasive 

improved the performance to AUC of 0.79 (± 0.01) and AP 0.68 (± 0.02) for the overall patient dataset and AUC of 0.79 
(± 0.01) and AP 0.72 (± 0.02) for the subgroup with respiratory disorders.

Conclusion:  The RNN-based model demonstrated better performance than RF and LR in patients in mechanical 
ventilation and its subgroup admitted with respiratory disorders. Clinical studies are needed to evaluate whether it 
impacts decision-making and patient outcomes.

Trial registration: NCT02731898 (https://​clini​caltr​ials.​gov/​ct2/​show/​NCT02​731898), prospectively registered on April 8, 
2016.
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(endotracheal tube or tracheostomy) and non-invasive 
(bilevel positive airway pressure (BIPAP) or continu-
ous positive airway pressure (CPAP) with nasal or facial 
mask) mechanical ventilation for at least 12 and 1  h, 
respectively. Data recorded for all the patients included 
basic demographics, cause of requiring mechanical venti-
lation, the occurrence of complications, ICU and hospital 
discharge outcome and length of stay. Furthermore, daily 
collected data, resulting in a single average value, are 
recorded for variables such as arterial gases, mechanical 
ventilation parameters and variables related to the func-
tion of other organs. All the patients in this cohort study 
were followed for mortality and length-of-stay outcomes 
during the period of receiving mechanical ventilation, 
ICU stay, up to 28 days over one month period in 1998, 
2004, 2010, and 2016. Only the investigative group mem-
bers and research coordinators at each site were aware of 
the purpose and the precise timing of the study.

We evaluate our method on a sub-sample of VEN-
TILA dataset containing data associated with 12,755 dis-
tinct hospital admissions for 12,596 adult patients (aged 
18  years or above) admitted during one-month sample 
periods (in 2004, 2010 and 2016) from participating ICUs 
across 37 countries.

Study subjects
We retrospectively evaluated the model on the overall 
VENTILA dataset (n = 12,755) as well as a sub-group of 
VENTILA patients that were admitted with respiratory 
disorders, specifically COPD, Asthma, interstitial lung 
disorders, ARDS or Pneumonia (n = 2674). Mortality 
rate in this subgroup was 36% (n = 960), while the overall 
morality was 31% (n = 3935).

Statistical analysis and variable selection
We use mean and standard deviation to express continu-
ous variables, while categorical variables are expressed as 
a percentage. No strong linear correlations were found 
between input variables and the target outcome, as 
shown in Fig. 1.

We carry out four different analysis. Initially we 
selected six mechanical ventilation parameters as input 
to our model, namely PaO2_FiO2, peak Pressure, plateau 
Pressure, applied PEEP, driving pressure and tidal Vol-
ume/PBW, as well as age and BMI. We derive the model 
based on these variables for both: (1) patients in the over-
all dataset and (2) a subgroup of patients admitted with 
respiratory disorders.

Furthermore, we carry out a sensitivity analyses to 
evaluate whether inclusion of variables related to the 
function of other organs, such as such as kidneys (creati-
nine) and liver (bilirubin) improves the predictive perfor-
mance of the model. This analysis is carried out for both: 

the overall dataset as well as on the subgroup of patients 
with respiratory disorders.

Dataset pre‑processing and missing values handling
Datasets were prepared for the analysis in several steps. 
Initially, outliers and noisy measurements were removed 
from the data by defining clinically valid intervals for each 
variable and considering out of interval values as missing 
values. Secondly, the Fill-Forward imputation methods 
were applied on each ICU-stay by forward propagating 
available values to use the nearest valid measurements. 
Since one of the most common reasons for missingness in 
ICU data is different frequency of measurements, using 
the nearest measured value becomes a suitable imputa-
tion strategy. Furthermore, imputation of variables com-
pletely missing during each ICU-stay was done using 
median of the variables in the training set. Finally, the 
data was normalized and scaled to have zero mean and 
unit variance such that variables with different scales can 
contribute equally to the analysis. The variable with the 
least missing values was ph (5.71%), while the highest was 
driving pressure (51.54%). The rest of the variables were 
as follows, PaCO2 (6.03%), appliedPEEP (7.97%), Creati-
nine (8.15%), PaO2_FiO2 (10.6%), tidalVolume (12.35%), 
tidalvolume/PBW (12.35%), peakPressure (17.4%), Biliru-
bin (25.94%), plateauPressure (51.33%).

Predictive performance metrics
We assess the performance of our models using a range 
of performance metrics, including area under the ROC 
curve (AUC), area under the precision-recall curve 
(AUPRC) (also known as average precision) as well as 

Fig. 1  Linear correlation of variables and the outcome (indicated by 
Discharge ICU). Note the correlation scale is in the interval − 0.2 to 
0.2
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positive predictive value (PPV), negative predictive value 
(NPV). We use Mathews correlation coefficient (MCC) 
[17] to compare quality of binary classifications between 
the different algorithms [18]. Lastly, we also investigate 
how well our model is calibrated, by plotting observed 
survival probability versus the survival probability pre-
dicted by our model using the calibration curve.

Machine learning model
Our model uses ventilation parameters as an input to 
predict the likelihood of the patient dying. We restricted 
the analysis to include ventilation parameters only in 
order to evaluate their predictive power, while the rest 
of the variables from this dataset were excluded from 
the analysis. Patients were included if they had at the 
variables documented at least once, while the remaining 
patients were excluded.

In terms of machine learning algorithms we chose to 
evaluate Logistic Regression (LR) as the baseline model, 
Random Forest (RF), an ensemble of decision trees that 
has shown great performance in predicting clinical 
outcomes [19, 20] and the Long Short-Term Memory 
(LSTM) neural network [3], a type of Recurrent Neural 
Network (RNN). As RF and LR are unable to process 
sequences directly, we expanded each sequence into a 
single vector that was then fed to RF and LR. While there 
is some information loss in terms of timing of measure-
ments, this approach attempts to minimise the loss, ren-
dering the comparison as fair as possible between the 
algorithms.

The proposed LSTM network consist of one layer with 
512 units, tanh activation function and Xavier normal 
weight initializer. Each patient record is classified in two 
possible outcomes using a SoftMax function in the out-
put layer. We have also evaluated the Sigmoid function, 
but without discernible difference in the performance. 
Model derivation (training) is carried out for 150 epochs 
with batch size of 64 using binary cross entropy as loss 
function and Adam optimizer with learning rate 0.001. 
To ensure robustness and generalizability of the model 
we use a dropout layer with 0.5 and a custom L1 regulari-
zation layer with parameter of 0.0005. We use Dropout 
[21] to force the neural network to learn a more robust 
internal representation such that our model can gen-
eralise outcome predictions on data of future patients, 
while we use L1 regularisation method to reduce model 
complexity and susceptibility to overfitting, increasing 
generalisability.

The performance of each model was evaluated using 
stratified five-fold cross-validation with 10 times repeti-
tion. First, we split the data randomly into model deriva-
tion set (80%) and model validation set (20%). Then we 
built the model and tuned the hyper-parameters based 

on the validation set. We repeat five-fold cross-validation 
10 times on the tuned model to reduce possible bias and 
evaluate generalisability, where for each run we calculate 
mean and standard deviation. The LSTM model is imple-
mented using PyTorch [22] open source machine learn-
ing framework and we also used the scikit-learn software 
library for the non-RNN models implementation.

Results
The overall dataset contained 12,755 ICU stays with 
complete data on ventilation parameters included in 
this study, where 3935 ICU stays were recorded as dead 
(30.85%). The respiratory disorders subgroup contained 
2674 ICU stays with 960 ICU stays recorded as dead. The 
most common diagnosis for this subgroup was pneu-
monia (n = 1368) followed by COPD (n = 527), ARDS 
(n = 501), CPD_nonCOPD (n = 180) and asthma (n = 98). 
Survivors are compared to non-survivors for the over-
all patient dataset (Table 1(a)) as well as the subgroup of 
patients with respiratory disorders (Table 1(b)).

We compared our LSTM-based model with both ran-
dom forrest and logistic regression methods. Predic-
tive performance of LSTM-based model was higher 
with AUC of 0.72 and Average Precision (AP) of 0.57 in 
comparison to RF and LR for the overall patient dataset. 
Higher predictive performance of AUC of 0.75 and AP of 
0.65 was recorded in the subgroup of patients admitted 
with respiratory disorders, as shown in Fig. 2a, b.

Other performance measures, such as PPV, NPV and 
MCC are detailed in Table  2(a) and (b), where LSTM-
based model outperforms both RF and LR in the majority 
of performance metrics.

Sensitivity analysis
We also performed a sensitivity analysis to evaluate 
whether inclusion of function of other organs, such as 
kidney and liver could improve predictive performance 
of the model. This analysis was carried out for the overall 
dataset as well as for the subgroup of patients admitted 
with respiratory disorders, where we included creatinine 
and bilirubin variables as well as pH and PaCO2, in addi-
tion to the variables used for the main analysis. These 
variables were chosen based on the review of literature as 
well as suggestion from the clinicians.

As it can be seen from Fig. 3a, b, the inclusion of vari-
ables related to kidney and liver function increased pre-
dictive performance significantly with AUC of 0.79 and 
AP 0.68 for the overall patient dataset and AUC of 0.79 
and AP 0.72, for the subgroup of patients with respira-
tory disorders. As shown in Table  3(a) and (b) LSTM 
based model outperforms RF and LR in the majority of 
performance metrics.
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Variable importance and model interpretability
A common criticism of LSTM-based models in particu-
lar and neural-network models in general, is that they 

are regarded as black-box models [23, 24]. We sought 
to address this issue by conducting a model interpret-
ability analysis, to understand how the model ranked the 
importance of variables when predicting mortality out-
comes. We used the Integrated Gradients (IG) method 
whose objective is to illustrate the relationship between a 
model’s prediction outcome and its’ input variables [25]. 
IG method explains outcomes of the LSTM models based 
on the gradients of the prediction outcomes with respect 
to input variables. By computing attribution of each vari-
ables, it ranks all the variables based on their importance. 
The attribution values measure the effect of each feature 
relative to the prediction for a baseline, which in our case 
was set to zero. As a result, the top three ranked variables 
of the LSTM model were creatinine, PaO2_FiO2, and pH 
(for the overall patient dataset) and pH, appliedPEEP, and 
Bilirubin (for the subgroup of patients with respiratory 
disorders). A graphical representation of the variables for 
each model and their ranking is provided in Fig. 4.

Predictive model calibration
While the ability of the model to discriminate between 
patients at higher risk of having an event from those at 
lower risk is an important aspect, alone it is not suffi-
cient. As such, we also consider model calibration, which 
measures how similar is the predicted absolute risk to the 
true observed risk in groups of patients. Poorly calibrated 
models will underestimate or overestimate the outcome 
of interest. As such we assess our model calibration by 
comparing predicted and observed risk of mortality at 
the whole patient population (mean calibration) as well 
as a subgroup of patients with respiratory disorders. As 
it can be seen in Fig. 5, all models achieved a very good 
calibration in predicting mortality risk for both the over-
all patient dataset and the subgroup of patients with res-
piratory disorders, even though models based on neural 
networks are typically poorly calibrated, as reported in 
the literature [26].

Discussion
In this study a recurrent neural network-based model 
outperformed random forest and logistic regression 
models regarding outcome prognostication in a large 
cohort of mechanically ventilated, critically ill patients 
of the VENTILA study group when using six common 
ventilation parameters, extended by age and body mass 
index (BMI). Predictive performance was even increased 
when serum bilirubin (as a marker of intact liver func-
tion), serum creatinine (as a marker of unscathed kid-
ney function), as well as pH and PaCO2 (as indicators 
of general metabolic and respiratory performance) were 
included.

Table 1  (a) Baseline demographics of survivors versus non-
survivors for all patients, (b) Baseline demographics of survivors 
versus non-survivors for patients admitted  with respiratory 
disorders

Variables Survivors Non-survivors p-value

(a) Overall cohort

Female sex n (%) 3298 (37) 1452 (37)

Age 58.87 ± 17.55 63.65 ± 16.16 < 0.01

Weight 75.36 ± 19.56 74.42 ± 19.32 0.01

PBW 62.17 ± 9.29 61.76 ± 9.31 0.02

BMI 26.56 ± 6.37 26.42 ± 6.29 0.25

Creatinine 1.38 ± 1.38 1.87 ± 1.66 < 0.01

Bilirubin 1.51 ± 3.39 2.55 ± 5.32 < 0.01

pH 7.40 ± 0.09 7.36 ± 0.12 < 0.01

PaCO2 39.96 ± 10.20 40.41 ± 11.81 0.15

PaO2_FiO2 257.99 ± 106.03 220.47 ± 107.66 < 0.01

peakPressure 23.98 ± 7.41 26.50 ± 7.89 < 0.01

plateauPressure 19.40 ± 5.65 21.03 ± 6.46 < 0.01

drivingPressure 12.64 ± 5.37 13.83 ± 6.13 < 0.01

appliedPEEP 6.66 ± 3.13 7.19 ± 3.60 < 0.01

tidalVolume 509.42 ± 118.72 498.82 ± 115.99 < 0.01

tidalvolume/PBW 8.30 ± 1.99 8.21 ± 2.13 < 0.01

SAPS_II 42.71 ± 17.04 55.08 ± 19.05 < 0.01

Propensity test 0.63 ± 0.03 0.63 ± 0.03 < 0.01

LOS in ICU 13.02 ± 13.45 11.70 ± 14.27 < 0.01

MV_days 8.41 ± 8.56 9.08 ± 10.10 < 0.01

(b) Cohort admitted with respiratory disorders

Female sex n (%) 653 (38) 340 (35)

Age 61.16 ± 17.19 63.94 ± 15.47 < 0.01

Weight 74.58 ± 23.13 71.80 ± 21.28 < 0.01

PBW 61.06 ± 9.33 61.32 ± 9.36 0.49

BMI 26.64 ± 7.80 25.58 ± 6.94 < 0.01

Creatinine 1.27 ± 1.14 1.75 ± 1.58 < 0.01

Bilirubin 1.44 ± 2.99 2.13 ± 4.66 0.01

pH 7.39 ± 0.09 7.35 ± 0.12 < 0.01

PaCO2 44.62 ± 13.13 45.14 ± 13.88 0.12

PaO2_FiO2 218.65 ± 94.10 178.84 ± 92.50 < 0.01

peakPressure 26.49 ± 8.13 29.07 ± 8.27 < 0.01

plateauPressure 21.41 ± 6.18 23.03 ± 6.75 < 0.01

drivingPressure 13.77 ± 5.80 14.70 ± 6.73 < 0.01

appliedPEEP 7.52 ± 3.77 8.27 ± 4.02 < 0.01

tidalVolume 478.62 ± 122.74 481.34 ± 121.99 < 0.01

tidalvolume/PBW 7.95 ± 2.15 7.97 ± 2.09 < 0.01

SAPS_II 43.37 ± 16.27 51.02 ± 18.30 < 0.01

Propensity test 0.64 ± 0.03 0.64 ± 0.03 < 0.01

LOS in ICU 15.72 ± 15.93 13.78 ± 15.74 < 0.01

MV_days 10.20 ± 10.51 10.48 ± 10.77 0.52
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pH, as the expression and common endpoint of both 
the metabolic and respiratory situation, was a relevant 
and potent predictor of outcome in both subgroups. In 

both subgroups, biomarkers for organ failure (bilirubin 
and creatinine, respectively) were relevant for the out-
come of the patients evaluated. Also, in the subgroup of 

Fig. 2  Panel a. Predictive performance (AUC and AUPRC) of our LSTM-based model versus Random Forrest (RF) and Logistic Regression (LR) for 
the overall patient dataset using six standard mechanical ventilation parameters. Panel b. Predictive performance of our LSTM-based model versus 
Random Forrest (RF) and Logistic Regression (LR) for the subgroup of patients admitted with respiratory disorders using six standard mechanical 
ventilation parameters. Confidence intervals are shown in grey for both panels

Table 2  (a) Performance of the models for the overall patient dataset using six standard mechanical ventilation parameters, (b) 
Performance of the models for the subgroup of patients admitted with respiratory disorders using six standard mechanical ventilation 
parameters

Highest performance is shown in bold

AUC​ AP PPV NPV MCC

(a) Overall cohort

LR 0.65 ± 0.01 0.46 ± 0.01 0.50 ± 0.02 0.74 ± 0.01 0.21 ± 0.01

RF 0.69 ± 0.01 0.52 ± 0.01 0.51 ± 0.02 0.76 ± 0.01 0.26 ± 0.01

LSTM 0.72 ± 0.01 0.57 ± 0.01 0.52 ± 0.03 0.79 ± 0.01 0.31 ± 0.02
(b) Cohort admitted with respiratory disorders

LR 0.67 ± 0.02 0.54 ± 0.03 0.54 ± 0.03 0.74 ± 0.01 0.28 ± 0.03

RF 0.71 ± 0.02 0.60 ± 0.02 0.54 ± 0.04 0.76 ± 0.02 0.31 ± 0.06

LSTM 0.75 ± 0.02 0.65 ± 0.03 0.59 ± 0.03 0.79 ± 0.01 0.37 ± 0.03
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primarily pulmonary patients the classical ventilation 
parameters were not the singularly decisive parameters 
for the outcome, although the respiratory parameters 

were present in a relatively high granularity. Ultimately, 
however, this is not surprising, as even in critical patients 
with initial respiratory problems, a systemic cascade of 

Fig. 3  Panel a. Predictive performance (AUC and AUPRC) of our LSTM-based model versus Random Forrest (RF) and Logistic Regression (LR) for 
the overall patient dataset, including also variables related to kidney and liver function. Panel b. Predictive performance of our LSTM-based model 
versus Random Forrest (RF) and Logistic Regression (LR) for the subgroup of patients admitted with respiratory disorders, including also variables 
related to kidney and liver function. Confidence intervals are shown in grey for both panels

Table 3  (a) Performance of the models for the overall patient dataset, by also including variables related to kidney and liver function, 
(b) Performance of the models for the subgroup of patients admitted with respiratory disorders, by also including variables related to 
kidney and liver function

Highest performance is shown in bold

AUC​ AP PPV NPV MCC

(a) Overall cohort

LR 0.72 ± 0.02 0.57 ± 0.03 0.58 ± 0.03 0.78 ± 0.01 0.34 ± 0.03

RF 0.76 ± 0.02 0.63 ± 0.02 0.59 ± 0.04 0.80 ± 0.01 0.38 ± 0.03

LSTM 0.79 ± 0.02 0.68 ± 0.02 0.59 ± 0.04 0.83 ± 0.01 0.42 ± 0.04
(b) Cohort admitted with respiratory disorders

LR 0.73 ± 0.01 0.61 ± 0.01 0.58 ± 0.03 0.77 ± 0.02 0.35 ± 0.03

RF 0.78 ± 0.02 0.69 ± 0.04 0.61 ± 0.05 0.80 ± 0.02 0.41 ± 0.06

LSTM 0.79 ± 0.01 0.72 ± 0.02 0.63 ± 0.04 0.80 ± 0.01 0.43 ± 0.03
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inflammation and stress is set in motion that transcends 
the underlying pulmonological starting point.

Machine learning is a promising approach for mul-
tiple applications in modern medicine. Especially in 

critical care, studies with a vast number of patients are 
commonly not available for certain disease entities. 
Computer-based approaches expand our possibilities by 
facilitating the use of highly complex models with lots 

Fig. 4  Variable importance ranking for each LSTM model: a) All patients, and b) patients admitted with respiratory disorders
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of different parameters and can therefore aid in complex 
clinical decision-making [1, 6, 27–29]. Of course, the cat 
bites its tail here, as ML benefits especially from large 
databases with significant patient numbers to exclude 
noisy data. Albeit the motto "the more, the better" cer-
tainly applies here, Shillan et  al. were able to show that 
even for study sizes with 1000–10,000 individuals, satis-
factory forecasts with AUCs around 0.83 can be achieved 
[30]. As demonstrated in our study, the use of additional 
variables can improve test performance and enable high 
prognostic accuracy in comparatively medium-sized 
patient collectives.

An association between the invasiveness of mechanical 
ventilation and/or oxygenation indices (especially the P/F 
value or Horowitz index) and mortality has been shown 
repeatedly in the past [14]. Different ventilatory param-
eters were found to be associated with mortality in previ-
ous studies. High driving pressures and tidal volumes, as 
well as low oxygenation indices were shown to be asso-
ciated with higher mortality in mechanically ventilated 
patients, especially in individuals with acute respiratory 
distress syndrome (ARDS) in multiple previous studies 
[31–36]. It therefore seemed reasonable to combine vari-
ous key ventilation parameters as mortality predictors 
in our ML model. Albeit mortality has decreased over 
time, higher age is a known predictor of worse outcome 
in mechanically ventilated patients, whereas low BMI-
values were associated with decreased survival in the 
past [37, 38]. Hence it seemed rational to additionally 
incorporate such common, but outcome-relevant gen-
eral patient characteristics into the model. As pulmonary 
performance is already indirectly covered by ventilation 
settings, inclusion of further non-ventilator associated, 
but vital organ function parameters seemed reason-
able (namely serum creatinine and bilirubin). Although 

affected by ventilation strategies and certainly also kid-
ney function, blood pH as a marker of metabolic integ-
rity and partial pressure of carbon dioxide (paCO2) as an 
indicator of satisfactory ventilation were also included 
in our model and yielded an even higher predictive per-
formance. It should be mentioned that several chal-
lenges could have affected the performance of the model, 
including the heterogeneity of data, given the multi-cen-
tre nature of the dataset spanning across diverse ICUs 
and countries; consequently, the heterogeneity of data 
collection protocols; and the averaging of ventilation 
parameters into a single daily value.

As already stated in the past, ML algorithms often lack 
transparency compared with conventional statistical 
analyses as they are not as reproducible for most external 
readers [30]. Nevertheless, considering the possibilities 
of our time, it seems reasonable trying to integrate them 
into our clinical practice in order to reflect our decisions 
in a sober light, based on different algorithms irrespective 
of gut feeling or other personal bias. Replacing medical 
specialists with artificial intelligence is certainly not the 
right way to go. Nevertheless, it seems rational, to reflect 
and analyse complex situations independently based on 
measurable (hard) criteria and therefore be able to make 
even better decisions for our patients in future.

Theoretically, and in this context, we consider our 
study to be theses-generating, an algorithm could not 
only serve to predict the outcome based on ventila-
tion parameters. Rather, an attempt could be made to 
explore an optimal ventilation strategy on the basis of 
large data sets. An algorithm would also be conceiv-
able, which as a (nearly) closed loop suggests ventilation 
parameters adapted to the individual situation, based on 
ventilation parameters, but also biomarkers and possibly 
other clinical and radiological variables, to the clinician. 

Fig. 5  Calibration plots for each LSTM model: All patients (left) and patients admitted with respiratory disorders (right)
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However, this is in any case beyond our data and analy-
sis. Ultimately, our analysis can also be seen as a "word of 
caution" in this context: the high value of biomarkers (bil-
irubin and creatinine) underlines the relevance of a holis-
tic approach. Therefore, despite all the enthusiasm for 
digital revolutions, it is important never to forget clinical 
relevance and practicability. In addition to these rather 
pragmatic considerations, ethical considerations regard-
ing the use of AI in everyday clinical practice are also 
highly relevant. Algorithms, especially those that have a 
relatively direct influence on therapy, must be subjected 
to a critical, evidence-based evaluation—i.e. randomized 
clinical studies—in analogy to medical production.

Limitations
Firstly, this is a retrospective study lacking a randomi-
sation process, prospective screening, and inclusion of 
patients and a control group, therefore this study can only 
be thesis-generating. Secondly no specific protocol for 
the collection of predictive variables (e.g., specific times-
pan and/or clinical situations when to document MV 
parameters) was applied, which could further dispose of 
the study to selection bias as well as imputation strat-
egy for the missing data. Lastly, it should be noted that 
LR and RF algorithms have not been designed to pro-
cess the sequences directly, in contrast to LSTM, which 
may explain the difference in performance between these 
algorithms.

Conclusion
The result of our analysis has shown that the RNN-based 
model demonstrated better performance than RF and 
LR in patients in mechanical ventilation and its sub-
group admitted with respiratory disorders. However, 
it is necessary to validate our results in further studies. 
We speculate that a dataset with higher granularity—for 
example, more closely timed records—could lead to an 
even higher predictive power of AI. The next step would 
then be to develop algorithms that not only seek to pre-
dict outcome, but also suggest alternative ventilation 
parameters based on prior data, and, for example, seek to 
ensure even better use and application of evidence-based 
treatment strategies such as low driving pressure ventila-
tion. If, in a next step, these suggestions—for example, in 
randomized trials—are associated with a survival benefit 
for our patients, then a further step would be the devel-
opment of "closed loop" ventilation systems that seek to 
optimize the ventilation of critically ill patients on the 
basis of collected parameters and within evidence-based 
limits. However, this is currently to be classified as a the-
oretical possibility and we recall that the strict standards 
of evidence-based medicine must also be applied to AI—
any algorithms must also prove their efficacy and safety 

in randomized trials. Medical ethics and legal issues must 
also be evaluated and discussed with all stakeholders at 
an early stage—how much control are physicians willing 
and able to relinquish, how much automated treatment 
are patients prepared to receive? These are interesting 
issues that currently remain unresolved and as a conse-
quence we consider our study to be thesis generating.
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