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Abstract
Representation bias in health data can lead to unfair decisions and
compromise the generalisability of research findings. As a consequence,
underrepresented subpopulations, such as those from specific ethnic
backgrounds or genders, do not benefit equally from clinical discoveries.
Several approaches have been developed to mitigate representation bias,
ranging from simple resampling methods, such as SMOTE, to recent
approaches based on generative adversarial networks (GAN). However,
generating high-dimensional time-series synthetic health data remains
a significant challenge. In response, we devised a novel architecture
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(CA-GAN) that synthesises authentic, high-dimensional time series data.
CA-GAN outperforms state-of-the-art methods in a qualitative and a
quantitative evaluation while avoiding mode collapse, a serious GAN fail-
ure. We perform evaluation using 7535 patients with hypotension and
sepsis from two diverse, real-world clinical datasets. We show that syn-
thetic data generated by our CA-GAN improves model fairness in Black
patients as well as female patients when evaluated separately for each
subpopulation. Furthermore, CA-GAN generates authentic data of the
minority class while faithfully maintaining the original distribution of
data, resulting in improved performance in a downstream predictive task.

Keywords: generative adversarial networks, GAN, synthetic data, resampling,
oversampling, data bias, underrepresentation, health data, algorithmic fairness,
ethnicity, gender.

1 Introduction
Clinical practice is poised to benefit from developments in machine learning as
data-driven digital health technologies transform health care [1]. Digital health
can catalyse the World Health Organisation’s (WHO) vision of promoting
equitable, affordable, and universal access to health and care [2]. However, as
machine learning methods increasingly weave themselves into the societal fabric,
critical issues related to fairness and algorithmic bias in decision-making are
coming to light. Algorithmic bias can originate from diverse sources, including
socio-economic factors, where income disparities between ethno-racial groups
are reflected in algorithms deciding which patients need care [3]. Bias can also
originate from the underrepresentation of particular demographics, such as eth-
nicity, gender, and age in the datasets used to develop machine learning models,
known as health data poverty [4]. Health data poverty impedes underrepre-
sented subpopulations from benefiting from clinical discoveries, compromising
the generalisability of research findings and leading to representation bias that
can compound health disparities.

Machine learning community has developed several approaches to mitigate
representation bias, with data resampling being the most widely used. Over-
sampling generates representative synthetic data from the underrepresented
subpopulation (minority class), resulting in a similar or equal representation.
Synthetic Minority Over-sampling TEchnique (SMOTE) [5] is a representa-
tive example of this method, where synthetic samples lie between a randomly
selected data sample and its randomly selected neighbour (using k-nearest neigh-
bour algorithm [6]). SMOTE and related methods [7–9] are popular approaches
due to their simplicity and computational efficiency.

However, SMOTE, when used with high-dimensional time-series data, may
decrease data variability and introduce correlation between samples [10–12]. In
response, alternative approaches based on Generative Adversarial Networks
(GAN) are gaining ground [13–17]. GANs have shown incredible results in
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generating realistic images [18], text [19], and speech [20] in addition to improv-
ing privacy [21]. While GANs address some of the issues of SMOTE-based
approaches, the generation of high-dimensional time-series data remains a
significant research challenge [22–24].

To address this challenge, we propose a new generative architecture called
Conditional Augmentation GAN (CA-GAN). Our CA-GAN extends Wasser-
stein GAN with Gradient Penalty [25, 26], presented in the Health Gym study
[27] (referred to in this paper as WGAN-GP*). However, our work has a dif-
ferent objective. Instead of generating new synthetic datasets, we condition
our GAN to augment the minority class only, while maintaining correlations
between the variables and correlations over time, in contrast to the recent work
[28]. As a result, CA-GAN captures the distribution of the overall dataset,
including the majority class. We compare the performance of our CA-GAN with
WGAN-GP* and SMOTE in generating synthetic data of patients of an under-
represented ethnicity (Black patients in our case) as well as gender (female).
We use two critical care datasets comprising acute hypotension (n=3343) and
sepsis (n=4192), resulting in 7535 patients overall.

Our datasets include both categorical and continuous variables with diverse
distributions and are derived from the well-studied MIMIC-III critical care
database [29]. These datasets were chosen to allow direct comparison with state
of the art approaches, our architecture is data agnostic.

Our work makes the following contributions: (1) We propose a new CA-GAN
architecture that addresses the shortcomings of traditional and the state-of-
the-art methods in generating high-dimensional, time-series, synthetic data,
using two real-world datasets. (2) Our multi-metric evaluation using qualitative
and quantitative methods demonstrate superior performance of CA-GAN with
respect to the state of the art architecture, while avoiding mode-collapse, a
significant GAN failure. (3) We evaluate our CA-GAN against SMOTE, a
naive but cost-effective resampling method, however limited in the synthesis of
authentic data. (4) We show the impact of synthetic data in improving model
performance for the minority (underrepresented) class, resulting in a fairer
model between Black and White ethnicities. (5) We also show that CA-GAN
can synthesise realistic clinical data of specific ethnicity and gender, improving
the performance in a downstream predictive task.

2 Results
We primarily focus on multi-metric evaluation of synthetic data generated by
our CA-GAN architecture in comparison to the data generated by state-of-the-
art WGAN-GP* architecture and the popular SMOTE approach. We provide a
separate analysis on the impact of synthetic data generated by our architecture
to mitigate representation bias and improve model fairness in Section 2.5 .
Considering significant challenges in evaluating generative models in general,
[30], and high-dimensional time-series data in particular [23], we adopted
a holistic approach to evaluating our work based on both qualitative and
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quantitative methods. We present the results of the data generated comparing
the performance of the three methods in augmenting the underrepresented
(minority) class, namely Black ethnicity and female gender.

Fig. 1: Two-dimensional representations of the acute hypotension dataset for
Black patients, including marginal distributions of the principal components.
Top panels: PCA two-dimensional representation of real (red) and synthetic
(blue) data, where CA-GAN provides the best overall coverage of real data
distribution, while SMOTE and WGAN-GP* show evidence of reduced coverage
and mode collapse. Bottom panels: t-SNE two-dimensional representation of
real data (red) and synthetic data (blue) for the three methods SMOTE,
WGAN-GP*, and CA-GAN. It can be seen that CA-GAN more uniformly
covers the real distribution, while SMOTE does not cover a significant part
of it (top right in the panel) and WGAN-GP* coverage is almost completely
separated from the real data.

2.1 Qualitative evaluation
To gain initial insights into the obtained results, we conduct a qualitative
evaluation employing visual representation methods that show the coverage
of synthetic data with respect to the real data. We use Principal Component
Analysis (PCA) to project the real and synthetic data onto a two-dimensional
space. We also use t-distributed Stochastic Neighbor Embedding (t-SNE) [31]
to plot both real and synthetic datasets in a two-dimensional latent space
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Fig. 2: Two-dimensional representations of the sepsis dataset for Black patients,
including marginal distributions of the principal components. Top panels: PCA
two-dimensional representation of real (red) and synthetic (blue) data, where
CA-GAN provides more coverage than SMOTE (especially in the top right
and bottom left part of the panel), while WGAN-GP* provides the lowest
coverage. Bottom panels: t-SNE two-dimensional representation of real data
(red) and synthetic data (blue) for the three methods SMOTE, WGAN-GP*,
and CA-GAN. It can be seen that SMOTE follows an interpolation pattern,
while CA-GAN expands into latent space, generating authentic data points
while remaining within the clusters identified by t-SNE. Data generated by
WGAN-GP* fall outside of the real data.

while preserving the local neighbourhood relationships between data points.
To compare the performance between the methods and ensure a consistent
visualisation of the real data, we have computed a common t-SNE embedding.

In Appendix G we present the results of Uniform Manifold Approximation
and Projection (UMAP) [32], which offers better preservation of the global
structure of the dataset when compared to t-SNE. The parameters of t-SNE
and UMAP are the same for all three methods as shown in Appendix C.

The results are illustrated in Figure 1 (acute hypotension) and Figure 2
(sepsis). Synthetic data generated by CA-GAN exhibits significant overlap
with the real data, indicating our model’s ability to accurately capture the
underlying structure of real data. This is especially evident in PCA, where the
representations reveal that the synthetic data generated by CA-GAN provides
the best overall coverage of the real data distribution. Further evidence is
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provided from the marginal distributions. For the acute hypotension dataset
(Figure 1), both WGAN-GP* and SMOTE show evidence of mode collapse
(evident also in the t-SNE plots), where synthetic data is generated from a
limited space. Similarly, for the sepsis dataset (Figure 2), CA-GAN covers more
of the real data distribution compared to SMOTE, while WGAN-GP* again
tends towards mode collapse.

Figures 1 and Figure 2 in the bottom panels show the t-SNE representations
of the real and synthetic data. For the acute hypotension dataset, CA-GAN
more uniformly covers the distribution of real data, while SMOTE does not
cover a significant part of it (top right in the panel). This is also evident
from the marginal distributions. WGAN-GP* coverage is almost completely
separated from the real data. For the sepsis dataset, t-SNE shows that SMOTE
follows an interpolation pattern failing to expand into the latent space. In
contrast, CA-GAN successfully expands the distribution into the latent space,
generating authentic data points, while remaining within the clusters identified
by t-SNE. Data generated by WGAN-GP* fall outside of the real data.

Figures 1 and 2 provide evidence that state of the art WGAN-GP* appears
to suffer from mode collapse, a significant limitation of GANs [33]. Mode
collapse occurs when the generator produces a limited variety of samples despite
being trained on a diverse dataset. The generator cannot fully capture the
complexity of the target distribution, limiting the quantity of generated samples
and resulting in repetitive output. This is because the generator can get stuck
in a local minimum where a few outputs are repeatedly generated, even though
the training data contains more modes that can be learned. This presents a
significant challenge in generating high-quality, authentic samples, while our
CA-GAN model overcomes this limitation.

The evidence that CA-GAN captures accurately the underlying structure
of real data is further reinforced based on joint distribution of variables, which
we show in Appendix D. In Appendix G we also present the UMAP latent
representation of the data, which preserves the global structure in Figures G6
(acute hypotension) and G7 (sepsis).

Finally, we show the distribution of individual variables of synthetic data
overlaid on the distribution of the real data. We use this to compare the
performance of our method with state of the art WGAN-GP* as well as
SMOTE as the baseline method, using acute hypotension dataset in Figure 3
and sepsis in Appendix A. Joint distributions are shown in Appendix D). The
distribution of synthetic data generated by our CA-GAN exhibits the closest
match to that of the real data. This close alignment is particularly evident
in variables related to blood pressure, including MAP, diastolic, and systolic
measurements. However, certain variables, such as urine and ALT/AST, pose
challenges for all three methods. These variables have highly skewed, non-
Gaussian distributions with long tails, making them difficult to transform
effectively using power or logarithmic transformations. In contrast, our CA-
GAN and WP-GAN* effectively capture the distribution of categorical variables.
Conversely, SMOTE encounters difficulties with several variables, including
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(a) CA-GAN

(b) WGAN-GP*

(c) SMOTE

Fig. 3: Distribution plots of each variable, overlaying real and synthetic data for
acute hypotension dataset. Distribution of variables related to blood pressure
(MAP, diastolic and systolic) is captured well by our method in comparison
to WGAN-GP* and SMOTE. CA-GAN performs better also for categorical
variables, while all the three methods struggle with variables with long tail,
non-normal distributions.
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both the numeric variable of urine and the categorical variable of the Glasgow
Coma Score (GCS). These observations are also reflected in the quantitative
evaluation in Section 2.2. The variables in the sepsis dataset are not only more
than twice as many as those in acute hypotension but also have more complex
distributions. Variables such as SGOT, SGPT, total bilirubin, maximum dose of
vasopressors, and others have extremely long tails. The three methods struggle
to generate these kinds of distributions and show a tendency to converge to
the median value. In contrast, the behaviour is similar to acute hypotension
for categorical and numerical variables normally distributed.

2.2 Quantitative evaluation
We used Kullback-Leibler (KL) divergence [34] to measure the similarity
between the discrete density function of the real data and that of the synthetic
data. For each variable v of the dataset, we calculate:

DKL(Pv∥Qv) =
∑
i

Pv(i) log
Pv(i)

Qv(i)
(1)

where Qv is the true distribution of the variable and Pv is the generated
distribution. The smaller the divergence, the more similar the distributions;
zero indicates identical distributions. The left half of Tables 1a and 1b show
the results of the KL divergence for each variable. Our CA-GAN method has
the lowest median across all variables for acute hypotension and sepsis data
compared to WGAN-GP* and SMOTE. This is despite the fact that SMOTE
is specifically designed to maintain the distribution of the original variables.

In addition, we used Maximum Mean Discrepancy (MMD) [35] to calculate
the distance between the distributions based on kernel embeddings, that is, the
distance of the distributions represented as elements of a reproducing kernel
Hilbert space (RKHS). We used a Radial Basis Function (RBF) Kernel:

K(xreal, xsyn) = exp

(
−∥xreal − xsyn∥2

2σ2

)
(2)

with σ = 1. The right half of Tables 1a and 1b shows the MMD results for
SMOTE, WGAN-GP* and our CA-GAN. Again, our model has the best median
performance across all the variables for acute hypotension data, while for sepsis
data, SMOTE shows a difference in performance by 0.00028. In summary, CA-
GAN performs best in the acute hypotension dataset by a wide margin while
showing comparable performance with SMOTE in the sepsis dataset.

2.3 Variable correlations
We used the Kendall rank correlation coefficient τ [36] to investigate whether
synthetic data maintained original correlations between variables found in the
real data of acute hypotension and sepsis datasets. This choice is motivated by
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Table 1: KL-Divergence and Maximum Mean Discrepancy between the
distribution of real and synthetic data for each variable of the datasets.

KL-divergence MMD

SMOTE WGAN-GP* CA-GAN SMOTE WGAN-GP* CA-GAN

MAP 0.11182 0.24941 0.17164 0.00137 0.00824 0.00110
Diastolic BP 0.28191 0.91622 0.24342 0.00155 0.00209 0.00086
Systolic BP 0.06405 0.10588 0.13194 0.00138 0.00120 0.00092
Fluid Boluses 0.01121 0.00358 0.00052 0.00047 0.00022 0.00003
Urine 0.00892 0.15183 0.00901 0.01321 0.08567 0.08443
Vasopressors 0.03622 0.05955 0.00175 0.00463 0.00883 0.00031
ALT 0.00068 0.37020 0.00800 0.01356 0.20156 0.18616
AST 0.00083 0.18162 0.00455 0.01323 0.20920 0.19538
FiO2 0.00858 0.01950 1.36841 0.00091 0.00043 0.00012
GCS 0.02432 0.02571 0.01934 0.05206 0.00688 0.00791
PO2 0.00315 0.13503 0.31726 0.00992 0.25091 0.24806
Lactic Acid 0.03192 0.42781 0.45402 0.01084 0.16273 0.19777
Serum Creatinine 0.02079 0.02851 0.08827 0.01892 0.22812 0.03313
Urine (M) 0.19717 0.00279 0.00070 0.09954 0.00170 0.00043
ALT/AST (M) 0.01872 0.00027 0.00031 0.00050 0.00001 0.00002
FiO2 (M) 0.07361 0.00965 0.00459 0.00892 0.00224 0.00103
GCS (M) 0.12043 0.00072 0.00013 0.03776 0.00030 0.00006
PO2 (M) 0.03846 0.00751 0.00033 0.00238 0.00067 0.00003
Lactic Acid (M) 0.03962 0.00010 0.00136 0.00274 0.00001 0.00015
Serum Creatinine (M) 0.05844 0.00777 0.00005 0.00613 0.00117 0.00001

Median 0.03407 0.02711 0.00629 0.00752 0.00217 0.00089

(a) Acute hypotension data

KL-divergence MMD

SMOTE WGAN-GP* CA-GAN SMOTE WGAN-GP* CA-GAN

Age 0.01796 0.03107 0.02815 0.00543 0.00960 0.00849
Heart Rate 0.01140 0.07822 0.03885 0.00158 0.00438 0.00243
Systolic BP 0.12038 0.09645 0.08592 0.00144 0.00319 0.00262
Mean BP 0.08035 0.29433 0.27170 0.00192 0.01012 0.00286
Diastolic BP 0.16654 0.30986 0.39555 0.00186 0.00319 0.00186
Respiratory Rate 0.03584 0.04324 0.04050 0.00395 0.00273 0.02020
Potassium 0.15016 0.11200 0.27340 0.00546 0.01811 0.00742
Sodium 0.22161 0.18242 0.19199 0.00372 0.01702 0.00124
Chloride 0.03949 0.06267 0.00989 0.00291 0.00410 0.00403
Calcium 0.33564 0.16861 0.13301 0.00604 0.06938 0.00585
Ionised Ca 1.88754 0.07055 0.01103 0.00005 0.90096 0.77536
CO2 0.04157 0.09045 0.05244 0.00371 0.00170 0.00118
Albumin 0.01604 0.00967 0.00532 0.00719 0.01420 0.00534
Hemoglobin 0.44026 0.30347 0.20345 0.00612 0.04899 0.02199
pH 0.12049 0.30020 0.08537 0.00002 0.00215 0.00003
Arterial Base Excess 0.14158 0.12252 0.04117 0.00410 0.01532 0.01113
HCO3 0.02426 0.12058 0.01444 0.00387 0.01526 0.00256
FiO2 0.01122 0.03122 0.03055 0.00022 0.00480 0.00160
Glucose 0.02167 0.12281 0.11088 0.00075 0.00041 0.00085
Blood Urea Nitrogen 0.04561 0.06180 0.05283 0.00211 0.00440 0.00391
Creatinine 0.00403 0.02395 0.13305 0.00739 0.04867 0.01437
Magnesium 0.05638 0.33564 0.18024 0.00158 0.04239 0.00214
SGOT 0.00104 0.00859 0.00199 0.00229 0.00907 0.00223
SGPT 0.00152 0.01028 0.00277 0.00198 0.00459 0.00340
Total Bilirubin 0.00493 0.02875 0.02077 0.00900 0.11124 0.00337
WBC 0.13135 0.08064 0.00788 0.00328 0.00573 0.02103
Platelets Count 0.00717 0.07344 0.00397 0.00116 0.00120 0.00079
paO2 0.01067 0.27433 0.02362 0.00091 0.00321 0.00071
paCO2 0.01632 0.05257 0.15250 0.00145 0.00729 0.00113
Lactate 0.00228 0.19152 0.11907 0.00829 0.01251 0.00342
Input Fluids Total 0.01047 0.00990 0.01833 0.00116 0.00208 0.00190
Input 4H 0.00397 0.00481 0.00471 0.02146 0.04044 0.02819
Max Vasopressors 4H 0.00886 0.00240 0.00295 0.00028 0.00083 0.00133
Total Urine Output 0.01397 0.01009 0.00832 0.00395 0.01644 0.01511
Output 4H 0.03328 0.00800 0.00484 0.00947 0.04256 0.02401
Gender 0.00117 0.02196 0.01476 0.01363 0.01384 0.00931
Readmission of Patient 0.00091 0.02287 0.01917 0.00064 0.01346 0.01134
Mechanical Ventilation 0.00065 0.02689 0.00577 0.00054 0.01685 0.00364
Temperature 0.00035 0.01592 0.00722 0.00011 0.00336 0.00236
GCS 0.01751 0.06029 0.01191 0.02948 0.02881 0.00903
SpO2 0.03123 0.09465 0.06963 0.02013 0.04669 0.03336
PTT 0.02686 0.03667 0.02221 0.01405 0.01906 0.01723
PT 0.03676 0.03933 0.00986 0.02061 0.03367 0.00594
INR 0.02486 0.03850 0.00669 0.02113 0.01912 0.00568

Median 0.02296 0.06105 0.02292 0.00349 0.01299 0.00377

(b) Sepsis data
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(a) Acute hypotension data

(b) Sepsis data

Fig. 4: Kendall’s rank correlation coefficients for the real data and the data
generated with CA-GAN, WGAN-GP*, and SMOTE.
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the fact that the τ coefficient does not assume a normal distribution, which
is the case for some of our variables, of the sepsis dataset in particular (as
shown in Figure 3 and Appendix A). Figure 4 shows the results of Kendall’s
rank correlation coefficients. For the acute hypotension dataset (Figure 4a),
CA-GAN captures the original variable correlations, as does SMOTE, with
the former having the closest results on categorical variables, while the latter
on numerical ones. WGAN-GP* shows the worst performance, accentuating
correlations that do not exist in real data. Similar patterns are also obtained
for the variables of patients with sepsis in Figure 4b.

2.4 Synthetic data authenticity
When generating synthetic data, the output must be a realistic representation
of the original data. Still, we also need to verify that the model has not merely
learned to copy the real data. GANs are prone to overfitting by memorising
the real data [37]; therefore, we use Euclidean Distance (L2 Norm) to evaluate
the originality of our model’s output. Our analysis shows that the smallest
distance between a synthetic and a real sample is 52.6 for acute hypotension
and 44.2 for sepsis, indicating that the generated synthetic data are not a mere
copy of the real data. This result, coupled with the visual representation of
CA-GAN (shown in Figure 1 and 2), illustrates the ability of our model to
generate authentic data. SMOTE, which by design interpolates the original data
points, is unable to explore the underlying multidimensional space. Therefore
its generated data samples are much closer to the real ones, with a minimum
Euclidean distance of 0.0023 for acute hypotension and 0.033 for sepsis. A
summary of distance metrics, including median, mean, standard deviation,
maximum and minimum is shown in Appendix E, Tables E3a and E3b.

2.5 Improving model fairness
Having evaluated the quality of synthetic data generated by our CA-GAN, we
now focus on evaluating the potential of synthetic data in improving model
fairness. Machine learning literature has highlighted many examples where
datasets with class imbalance lead to unfair decisions for the minority class
[38]. This is especially important when those decisions significantly affect the
health of patients and the society at large, as is the case with our study. We
measure fairness by comparing model performance across subgroups, based
on the approach described in [39]. In this respect we have carried out an
analysis to understand the performance of a predictive model within Black
patients and White patients separately and the impact of synthetic data.
For this purpose we chose the task of predicting lactate within each ethnic
subgroup, based on our previous work [40]. Lactate is essential in guiding
clinical decision making for patients with sepsis and ultimately affects patients’
survival [41, 42]. Therefore, any differences between Black and White patients
in lactate prediction performance would result in potentially unfair treatment
decisions due to data representation bias. Based on our work in [40] we trained
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an LSTM classifier to predict whether the outcome of the last lactate value
in the time series of the patients was above a critical threshold, using as
input the previous observations of the clinical variables in our dataset. The
model was validated on real data only, using a stratified 3-fold cross validation
with 10 repetitions. Initially we used only the real (original) sepsis dataset
containing around 11% of Black patients. The predictive performance of an
LSTM model within the Black patient cohort was AUC of 0.65. This is in
contrast to AUC of 0.70 within the White patient cohort. For comparison the
overall performance of the model when including both ethnicities was 0.70.
Then we augmented the original Black patient cohort with synthetic data
(conditioned on Black patients only) generated by our CA-GAN method, such
that the representation between Black and White patients was equal. As a
consequence, the predictive performance within Black patient cohort increased
to AUC of 0.69, while maintaining the AUC of 0.70 for the White patients
cohort and the full dataset with both ethnicities. Synthetic data augmentation
resulted in a fairer model between ethnicities, with a statistically significant
difference between non-augmented and augmented datasets.

2.6 Downstream regression task on ethnicity
Finally, we also sought to evaluate the ability of CA-GAN to maintain the
temporal properties of time series data, considering ethnicity and gender (in
the following section). Since our objective is to augment the minority class to
mitigate representation bias, we wanted to verify that the datasets augmented
with synthetic data generated by our model can maintain or improve the
predictive performance of the original data on a downstream task. Initially,
we trained only a Bidirectional Long Short-Term Memory (BiLSTM) with
real data as the baseline. Later, we trained the BiLSTM with synthetic and
augmented datasets separately, considering ethnicity and gender diversity. They
were used to evaluate the performance in a regression task. To address the
inherent randomness in the models, we used CA-GAN to create five different
synthetic datasets. For each of these datasets, we trained five BiLSTM models,
resulting in a total of 25 BiLSTM models (5 datasets × 5 models per dataset).
A complete description of how we performed these experiments is provided in
Appendix F.

Table 2a and Table 2b show the mean absolute errors between the BiLSTM
prediction and the actual acute hypotension and sepsis observations, respectively.
In the first column, we show the results achieved using only the real data to
make the predictions; in the second column, the results using only the synthetic
data; and finally, in the third column, the results achieved by predicting with
the augmented dataset, that is, with both the real and synthetic data together,
considering both ethnic and gender diversity in the augmentation process.
Overall, adding the synthetic data reduces the predictive error. This indicates
that the temporal characteristics of the data generated by our CA-GAN model
are close enough to those of the real data to maintain the original predictive
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Table 2: Mean prediction errors of a BiLSTM trained on real, synthetic, and
augmented data for a downstream prediction task. The numbers in parentheses
represent the standard deviation

Real Synthetic Augmented

MAP 10.129 (0.487) 9.084 (0.401) 8.530 (0.234)
Diastolic BP 8.328 (0.653) 7.500 (0.246) 7.491 (0.205)
Systolic BP 19.930 (0.752) 16.375 (1.405) 13.121 (0.646)
Fluid Boluses 19.547 (2.387) 22.987 (2.051) 22.684 (1.544)
Urine 54.915 (1.591) 49.615 (2.201) 49.461 (3.279)
Vasopressors 0.290 (0.051) 0.446 (0.079) 0.430 (0.082)
ALT 7.561 (0.616) 8.244 (1.079) 6.235 (2.018)
AST 18.017 (3.876) 9.629 (2.106) 8.091 (2.377)
FiO2 0.022 (0.019) 0.023 (0.008) 0.028 (0.015)
GCS 0.226 (0.069) 0.481 (0.093) 0.666 (0.177)
PO2 26.745 (9.310) 12.297 (1.184) 11.375 (4.392)
Lactic Acid 0.107 (0.064) 0.262 (0.018) 0.168 (0.023)
Serum Creatinine 0.158 (0.054) 0.357 (0.037) 0.321 (0.040)

Median 8.493 (0.639) 8.255 (0.731) 6.844 (0.843)

(a) Acute hypotension data

Real Synthetic Augmented

Heart Rate 13.926 (1.406) 6.462 (0.510) 6.061 (0.238)
Systolic BP 20.975 (0.411) 12.129 (1.048) 11.636 (0.704)
Mean BP 12.628 (0.885) 7.706 (0.376) 7.447 (0.458)
Diastolic BP 9.793 (0.468) 8.427 (0.286) 8.282 (0.446)
Respiratory Rate 2.515 (0.270) 2.388 (0.065) 2.341 (0.039)
Potassium 0.183 (0.020) 0.207 (0.027) 0.220 (0.048)
Sodium 28.981 (1.978) 3.698 (0.077) 3.733 (0.122)
Chloride 8.125 (0.396) 4.533 (0.368) 4.080 (0.483)
Calcium 0.388 (0.043) 0.327 (0.057) 0.388 (0.118)
Ionised Ca 0.052 (0.001) 0.092 (0.043) 0.086 (0.041)
Carbon Dioxide 2.324 (0.206) 2.033 (0.177) 1.893 (0.158)
Albumin 0.516 (0.006) 0.452 (0.020) 0.442 (0.008)
Hemoglobin 0.725 (0.087) 0.616 (0.063) 0.655 (0.079)
pH 0.082 (0.050) 0.083 (0.022) 0.075 (0.041)
Arterial Base Excess 2.972 (0.070) 2.876 (0.019) 2.847 (0.019)
HCO3 3.244 (0.628) 2.391 (0.065) 2.452 (0.142)
FiO2 0.068 (0.025) 0.063 (0.016) 0.046 (0.014)
Glucose 34.395 (0.765) 24.366 (0.543) 23.388 (0.765)
Blood Urea Nitrogen 4.096 (0.765) 4.484 (0.429) 3.430 (0.343)
Creatinine 0.135 (0.035) 0.257 (0.056) 0.276 (0.041)
Magnesium 0.109 (0.015) 0.126 (0.023) 0.126 (0.031)
SGOT 216.348 (2.019) 206.530 (0.731) 207.164 (1.537)
SGPT 165.979 (1.735) 153.379 (1.475) 153.672 (1.527)
Total Bilirubin 1.550 (0.089) 1.457 (0.155) 1.398 (0.028)
WBC 1.072 (0.208) 1.516 (0.144) 1.264 (0.097)
Platelets Count 119.777 (4.692) 59.953 (4.340) 62.003 (6.094)
paO2 37.749 (0.064) 35.157 (1.201) 35.318 (1.989)
paCO2 7.206 (0.454) 6.156 (0.377) 6.035 (0.292)
Lactate 1.026 (0.174) 0.864 (0.024) 0.860 (0.018)
Input Fluids Total 9824.288 (6.460) 9378.006 (56.594) 9354.273 (27.237)
Input 4H 195.774 (1.827) 177.704 (1.970) 178.058 (4.157)
Max Vasopressors 4H 0.048 (0.018) 0.085 (0.043) 0.126 (0.144)
Total Urine Output 9067.905 (4.940) 8738.295 (16.576) 8770.296 (29.386)
Output 4H 235.173 (4.450) 169.318 (5.368) 168.216 (4.849)

Median 3.932 (0.536) 2.876 (0.019) 2.847 (0.019)

(b) Sepsis data

performance. Thus, the augmented dataset could be used in a downstream
task, mitigating the representation bias.

It should be noted that the errors in Input Fluids Total and Total Urine
Output are exceptionally high compared to the other variables. This is because
predicting these variables is generally challenging, stemming partly from how



14 Gen AI mitigates representation bias and improves fairness

they are collected and recorded rather than an issue inherent to synthetic data
generation.

2.7 Downstream regression task on gender-conditioned
data

Biased Real Synthetic Real Augmented

Heart Rate 12.095 (0.190) 6.636 (0.536) 6.526 (0.330) 6.182 (0.250)
Systolic BP 21.662 (1.290) 10.803 (0.896) 11.453 (0.549) 9.909 (0.387)
Mean BP 10.280 (0.054) 6.342 (0.201) 7.055 (0.587) 6.507 (0.287)
Diastolic BP 9.308 (0.666) 6.304 (0.186) 7.029 (0.406) 6.131 (0.049)
Respiratory Rate 2.461 (0.071) 2.478 (0.196) 2.444 (0.065) 2.419 (0.107)
Potassium 0.258 (0.047) 0.195 (0.012) 0.158 (0.019) 0.190 (0.027)
Sodium 32.669 (1.528) 3.793 (0.149) 3.653 (0.071) 3.891 (0.204)
Chloride 10.612 (1.388) 4.013 (0.561) 5.013 (0.240) 3.700 (1.495)
Calcium 0.425 (0.030) 0.537 (0.129) 0.190 (0.060) 0.411 (0.091)
Ionised Ca 0.070 (0.015) 0.110 (0.032) 0.056 (0.004) 0.101 (0.043)
Carbon Dioxide 3.034 (0.820) 2.462 (0.155) 2.667 (0.744) 2.306 (0.112)
Albumin 0.514 (0.045) 0.458 (0.009) 0.474 (0.010) 0.460 (0.013)
Hemoglobin 0.729 (0.066) 0.677 (0.153) 0.596 (0.021) 0.666 (0.086)
pH 0.070 (0.020) 0.073 (0.044) 0.076 (0.038) 0.082 (0.019)
Arterial Base Excess 2.632 (0.098) 2.612 (0.037) 2.605 (0.078) 2.547 (0.032)
HCO3 3.278 (0.293) 2.651 (0.136) 3.172 (0.571) 2.490 (0.048)
FiO2 0.075 (0.015) 0.064 (0.003) 0.058 (0.003) 0.066 (0.005)
Glucose 46.868 (0.555) 28.239 (3.333) 24.431 (2.191) 26.405 (1.246)
Blood Urea Nitrogen 6.425 (0.814) 5.449 (0.414) 3.500 (0.979) 4.583 (0.329)
Creatinine 0.126 (0.025) 0.252 (0.076) 0.172 (0.107) 0.169 (0.022)
Magnesium 0.111 (0.015) 0.135 (0.041) 0.096 (0.021) 0.124 (0.028)
SGOT 130.591 (1.089) 127.034 (1.791) 136.685 (3.285) 126.824 (2.759)
SGPT 112.892 (2.177) 113.651 (5.488) 118.709 (3.904) 112.270 (3.293)
Total Bilirubin 1.552 (0.076) 1.347 (0.147) 1.552 (0.252) 1.398 (0.084)
WBC 0.990 (0.221) 1.280 (0.297) 1.101 (0.612) 1.195 (0.305)
Platelets Count 134.399 (4.411) 53.030 (3.271) 43.874 (4.875) 56.936 (5.577)
paO2 45.729 (0.515) 38.913 (0.811) 42.085 (1.316) 38.054 (1.368)
paCO2 6.954 (0.195) 5.867 (0.165) 6.866 (1.254) 5.861 (0.131)
Lactate 0.796 (0.048) 0.725 (0.015) 0.759 (0.025) 0.734 (0.020)
Input Fluids Total 10524.103 (9.990) 10136.382 (24.197) 10325.518 (27.476) 10086.376 (51.517)
Input 4H 158.433 (1.912) 137.386 (1.772) 154.167 (5.623) 138.082 (1.460)
Max Vasopressors 4H 0.065 (0.033) 0.036 (0.010) 0.026 (0.016) 0.033 (0.007)
Total Urine Output 10124.596 (5.131) 9774.791 (31.050) 9981.963 (13.985) 9759.179 (22.349)
Output 4H 210.089 (11.468) 159.417 (3.038) 163.217 (3.371) 158.430 (3.308)

Median 4.784 (0.393) 3.193 (0.052) 3.294 (0.241) 2.870 (0.220)

Table 3: Results of downstream regression task on gender-conditioned data,
based on Mean Absolute Error (MAE), with standard deviation shown in
brackets. Biased Real represents the real datatset from which we have removed
80% of the data from female patients.

As a final test, we have devised an additional dataset of patient subpop-
ulations with an artificially biased gender representation. Specifically, from
the original sepsis data (defined as "Real"), we have removed 80% of the data
from female patients to introduce a gender-based bias ("Biased Real" dataset).
We used the biased dataset to train our architecture and generate synthetic
data. To evaluate the performance of our approach, we applied a downstream
regression task similarly to the one presented above for the ethnicity data.

Our results show that the performance of data generated by our model
is comparable to that of real data. Namely using the original dataset, we
obtain a Mean Absolute Error (MAE) of 4.784 (±0.393), while we obtain
an MAE of 3.193 (±0.052) using the synthetic dataset, indicating that the
CA-GAN generates faithful synthetic data. What is even more interesting is
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that combining synthetic data with the real data further reduced the MAE to
2.870 (±0.220), which is lower than that of the real data alone (MAE of 3.294
(±0.241)).

3 Discussion
As machine intelligence scales upwards in clinical decision-making, the risk of
perpetuating existing health inequities increases significantly. This is because
biased decision-making can continuously feed back the data used to train the
models, creating a vicious circle that further ingrains discrimination towards
underrepresented groups. Representation bias, in particular, frequently occurs
in health data, leading to decisions that may not be in the best interests of all
patients, favouring specific subpopulations while treating underrepresented sub-
populations, such as those with standard set characteristics including ethnicity,
gender, and disability unfavourably.

To address these issues, representation must be improved before algorithmic
decision-making becomes integral to clinical practice. While unequal representa-
tion is a multifaceted challenge involving diverse factors such as socio-economic,
cultural, systemic, and data, our work represents a step towards addressing
one significant facet of this challenge: mitigating existing representation bias in
health data.

We have shown that our work can generate high-quality synthetic data
when evaluated against state-of-the-art architectures and traditional approaches
such as SMOTE. SMOTE has notable advantages over other data generation
techniques as it requires no training and can work with smaller datasets. It can
mirror non-normal distributions even if it tends to overestimate the median in
long-tail distributions. This is in contrast to GANs, which struggle with these
types of distributions. However, generating authentic data remains a significant
challenge for SMOTE, especially important when considering confidentiality of
data and patients’ privacy.

Through qualitative and quantitative evaluation, we have shown that CA-
GAN can generate authentic data samples with high distribution coverage,
avoiding mode collapse failure, while ensuring that the generated data are
not copies of the real data. We have also shown that augmenting the dataset
with the synthetic data generated by CA-GAN leads to lower errors in the
downstream regression task. This indicates that our model can generalise well
from the original data.

A notable advantage of our approach is that it uses the overall dataset, and
not only the minority class, as is the case with WGAN-GP* and SMOTE. This
means that CA-GAN can be applied in smaller datasets and those with highly
imbalanced classes, such as rare diseases.

Furthermore, we evaluated our method on two datasets with diverse charac-
teristics and found that our CA-GAN performed better on the acute hypotension
dataset. This may be because some of the numerical variables in the sepsis
dataset have long-tailed distributions, presenting a modelling challenge for all
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the methods. Similar challenges are observed for variables with non-normal
distributions. Additionally, the sepsis dataset contained fewer data points per
patient than acute hypotension (15 versus 48 observations). A shorter input
sequence may have created difficulty for BiLSTM modules to learn the under-
lying structure of the original data effectively, coupled with a higher number of
variables (twice as many) in the sepsis dataset. We also note that the lower
number of patients in the acute hypotension dataset does not impact the gen-
erative performance of our method. This ability to work with fewer data points
(patients) is encouraging, given the overall objective of our goal of augmenting
representation.

The task of generalising to unseen data categories is particularly challenging
due to the inherent unknowns these categories represent. While a definitive
strategy is yet to be developed, we believe that integrating conditional genera-
tion with metric learning, as seen in prototypical networks [43], could provide
a dual advantage. This integration could not only facilitate the generation of
novel data points but also offer a quantifiable framework to assess their similar-
ity or dissimilarity to known data categories. Such an approach could extend
the capabilities of CA-GAN beyond data augmentation, potentially improving
the interpretability and applicability of the synthetic data generated.

In terms of evaluation metrics, our current approach primarily focuses
on statistical properties of the generated data. However, to ascertain the
practical utility and accuracy of the synthetic data produced by CA-GAN, we
recognise the importance of domain-specific validations, including performance
in subpopulations [44, 45]. Inspired by the collaborative efforts outlined in
[46], we are committed to exploring partnerships with experts in relevant fields
such as healthcare and clinical practice to guide the development of evaluation
metrics. Their input will ensure that our synthetic datasets can meet the
rigorous demands of real-world applications and contribute meaningfully to the
domains they are intended to serve.

Our architecture can provide a solid basis to generate privacy preserving
synthetic data and mitigate barriers to access clinical data. This is because,
we have ensured that the synthetic data generated by our CA-GAN are not
a mere copy of the real data on one hand, while on the other, the synthetic
data reflect the distributions of the real data. However, privacy preserving
aspects will require additional analysis, such as reconstruction attacks, which
are beyond the scope of the current work.

While CA-GAN architecture showed superior performance with respect to
state of the art method as well as computationally inexpensive approaches, some
limitations are present. Namely, CA-GAN may require additional optimisations
to further increase performance on datasets with variables with non Gaussian
distributions and those with long-tailed distributions. Furthermore, additional
analysis will be required to evaluate the generalisation capability of our archi-
tecture with datasets of different characteristics. In this respect we aim to refine
CA-GAN while exploring alternative architectures (such as Diffusion Models)
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in addressing some of these limitations. One approach might be using convolu-
tional neural networks (CNNs) or Temporal Convolutional Networks (TCNs)
as a promising direction to potentially improve the efficiency of our model.
The work of Bai et al. [47] provides an empirical foundation for this approach,
indicating that such network structures can rival the performance of recurrent
networks for sequence modelling tasks. Additionally, prior research [48] sug-
gests that simplifying the internal mechanisms of these recurrent units can
lead to improvements in both performance and computational efficiency. These
insights provide a strong impetus for our future work, where we aim to refine
the CA-GAN model to harness the benefits of these alternative architectures
without compromising its ability to perform conditional generation.

Finally, we are aware that the use of synthetic data may generate several
ethical and policy implications including the fact that synthetic data cannot
fully address the historical biases and discriminatory practices which are often
reflected in the data [49]. While our work can mitigate existing representation
biases, we must ensure that this does not come at the risk of disincentivising
participation of underrepresented groups or perpetuating other types of data
biases [50, 51]. Finally, while we showed the utility of synthetic data, we also
note that the findings should always be confirmed using real data.

4 Methods
We begin by formally formulating the problem we are addressing. Then we
discuss the data sources we used to train our models and compare and con-
trast Generative Adversarial Networks (GANs) and Conditional Generative
Adversarial Networks (CGANs). We also provide an in-depth analysis of the
baseline model for this work, WGAN-GP*. Finally, we present the architecture
of our proposed Conditional Augmentation GAN (CA-GAN) and discuss its
advantages over other methods.

4.1 Problem Formulation
Let A be a vector space of features and let a ∈ A represent a feature vector.
Let L = {0, 1} be a binary distribution modifier, and let l a binary mask
extracted from L. We consider a data set D0 = {an}Nn=1 with l = 0, where
individual samples are indexed by n ∈ {1, ..., N} and we also consider a data
set D1 = {am}N+M

m=N+1 with l = 1, where individual samples are indexed by
m ∈ {N + 1, ..., N +M}, and N > M . We define the training data set D as
D = D0 ∪D1.

Our goal is to learn a density function d̂{A} that approximates the true
distribution d{A} of D. We also define d̂1{A} as d̂{A} with l = 1 applied.

To balance the number of samples in D, we draw random variables X from
d̂1{A} and add them to D1 until N = M . Thus, we balance out D.
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4.2 Data sources, variables and patient population
Our analysis uses two datasets extracted from the MIMIC-III database. The
detailed data pre-processing steps are outlined in our previous publication [27],
in Section 1.2 and Section 1.3 of the supplementary material. We chose these
two datasets as they have already been used in the study describing WGAN-
GP* [27] making the comparison with our method fairer. We decided to test
the methods for the oversampling of only one minority class, thus including
only patients that belonged to the White (coded as Caucasian) or Black ethnic
groups. We used a similar approach for gender, shown in Subsection 2.7.

The acute hypotension dataset comprises 3343 patients admitted to critical
care; the patients were either of Black (395) or White (2948) ethnicity. Each
patient is represented by 48 data points, corresponding to the first 48 hours
after the admission, and 20 variables, namely nine numeric, four categorical,
and seven binary variables. Details of this dataset are presented in Appendix B,
Table B1.

The Sepsis dataset comprises 4192 patients admitted to critical care of either
Black (461) or White (3731) ethnicity. Each patient is represented by 15 data
points, corresponding to observations taken every four hours from admission,
and 44 variables, namely 35 numeric, six categorical, and three binary variables.
Details of this dataset are presented in Appendix B, Table B2.

4.3 GAN vs CGAN
The Generative Adversarial Network (GAN) [52] entails two components: a
generator and a discriminator. The generator G is fed a noise vector z taken
from a latent distribution pz and outputs a sample of synthetic data. The
discriminator D inputs either fake samples created by the generator or real
samples x taken from the true data distribution pdata. Hence, the GAN can be
represented by the following minimax loss function:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[1− logD(G(z))] (3)

The goal of the discriminator is to maximise the probability of discerning fake
from real data, whilst the purpose of the generator is to make samples realistic
enough to fool the discriminator, i.e., to minimise Ez∼pz(z)[1 − logD(G(z))].
As a result of the reciprocal competition, both the generator and discriminator
improve during training.

The limitations of vanilla GAN models become evident when working with
highly imbalanced datasets, where there might not be sufficient samples to train
the models to generate minority-class samples. A modified version of GAN, the
Conditional GAN [53], solves this problem using labels y in both the generator
and discriminator. The additional information y divides the generation and the
discrimination in different classes. Hence, the model can now be trained on the
whole dataset to generate only minority-class samples. Thus, the loss function
is modified as follows:
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min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x∥y)]+

Ez∼pz(z)[1− logD(G(z∥y))] (4)

GAN and CGAN, overall, share the same significant weaknesses during training,
namely mode collapse and vanishing gradient [33]. In addition, as GANs were
initially designed to generate images, they have been shown unsuitable for
generating time-series [54] and discrete data samples [55].

4.4 WGAN-GP*
The WGAN-GP* introduced by Kuo et al. [27] solved many of the limitations
of vanilla GANs. The model was a modified version of a WGAN-GP [25, 26];
thus, it applied the Earth Mover distance (EM) [56] to the distributions, which
had been shown to solve both vanishing gradient and mode collapse [57]. In
addition, the model applied the Gradient Penalty during training, which helped
to enforce the Lipschitz constraint on the discriminator efficiently. In contrast
with vanilla WGAN-GP, WGAN-GP* employed soft embeddings [58, 59],
which allowed the model to use inputs as numeric vectors for both binary and
categorical variables, and a Bidirectional LSTM layer [60, 61], which allowed
for the generation of samples in time-series. While LD was kept the same, LG

was modified by Kuo et al. [27] by introducing alignment loss, which helped
the model to capture correlation among variables over time better. Hence, the
loss functions of WGAN-GP* are the following:

LD = Ez∼pz(z)[D(G(z))]− Ex∼pdata(x)[D(x)]+

λGPEz∼pz(z)[(∇D(G(z))2 − 1)2] (5)

LG = −Ez∼pz(z)[D(G(z))] + λcorr

n∑
i=1

i−1∑
j=1

∥r(i,j)syn − r
(i,j)
real∥L1︸ ︷︷ ︸

Alignment loss

(6)

To calculate alignment loss, we computed Pearson’s r correlation [62] for every
unique pair of variables X(i) and X(j). We then applied the L1 loss to the
differences in the correlations between rsyn and rreal, with λcorr representing
a constant acting as a strength regulator of the loss.

In their follow-up papers, Kuo et al. noted that their simulated data based
on their proposed WGAN-GP* lacked diversity. In [63], the authors found
that WGAN-GP* continued to suffer from mode collapse like the vanilla GAN.
Similar to our own CA-GAN, the authors extended the WGAN-GP setup with
a conditional element where they externally stored features of the real data
during training and replayed them to the generator sub-network at test time.
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In [64], the same panel of researchers also experimented with diffusion models
[65] and found that diffusion models better represent binary and categorical
variables. Nonetheless, they demonstrated that GAN-based models encoded
less bias (in the means and variances) of the numeric variable distributions.

4.5 CA-GAN
We built our CA-GAN by conditioning the generator and the discriminator
on static labels y. Hence, the updated loss functions used by our model are as
follows:

LD = Ez∼pz(z)[D(G(z∥y))]− Ex∼pdata(x)[D(x∥y)]+
λGPEz∼pz(z)[(∇D(G(z∥y))2 − 1)2] (7)

LG = −Ez∼pz(z)[D(G(z∥y))] + λcorr

n∑
i=1

i−1∑
j=1

∥r(i,j)syn − r
(i,j)
real∥L1︸ ︷︷ ︸

Alignment loss

(8)

Where y can be any categorical label. During training, the label y was used
to differentiate the minority from the majority class, and during generation,
they were used to create fake samples of the minority class.

Compared to WGAN-GP* we also increased the number of BiLSTMs from
1 to 3 both in the generator and the discriminator, as stacked BiLSTMs have
been shown to capture complex time-series better [66]. In addition, we decreased
the learning rate and batch size during training. An overview of the CA-GAN
architecture is shown in Figure 5.
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Fig. 5: Proposed architecture of our CA-GAN.
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Appendix A Distribution Plots for Sepsis

Fig. A1: Overlaid distribution plots of real data and CA-GAN synthetic data
for each variable in the sepsis dataset.
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Fig. A2: Overlaid distribution plots of real data and WGAN-GP* synthetic
data for each variable in the sepsis dataset.
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Fig. A3: Overlaid distribution plots of real data and SMOTE synthetic data
for each variable in the sepsis dataset.
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Appendix B Datasets

Table B1: Variables in the acute hypotension dataset. For each variable, the
data type, the unit in which it is expressed, and the distribution statistics are
presented.

Variable Name Data Type Unit Descriptive Statistics

Mean Arterial Pressure numeric mmHg Median: 68.00 (Q1: 61.00, Q3: 76.00)
Diastolic Blood Pressure numeric mmHg Median: 54.00 (Q1: 47.00, Q3: 62.00)
Systolic BP numeric mmHg Median: 107.00 (Q1: 96.00, Q3: 120.00)
Urine numeric mL Median: 75.00 (Q1: 45.00, Q3: 140.00)
Alanine Aminotransferase numeric IU/L Median: 35.00 (Q1: 23.00, Q3: 35.00)
Aspartate Aminotransferase numeric IU/L Median: 50.00 (Q1: 33.00, Q3: 50.00)
Partial Pressure of Oxygen numeric mmHg Median: 102.00 (Q1: 99.00, Q3: 102.00)
Lactate numeric mmol/L Median: 1.80 (Q1: 1.20, Q3: 1.80)
Serum Creatinine numeric mg/dL Median: 1.10 (Q1: 0.80, Q3: 1.90)
Fluid Boluses categorical mL 4 Classes

[0,250) : 95.75%; [250,500) : 0.61%
[500,1000) : 1.73%; ≥ 1000 : 1.91%

Vasopressors categorical mcg/kg/min 4 Classes
0 : 81.95%; (0,8.4) : 9.02%
[8.4,20.28) : 4.51%; ≥ 20.28 : 4.52%

Fraction of Inspired Oxygen categorical fraction 10 Classes
≤ 0.2 : 0.44%; 0.2 : 0.45%
0.3 : 5.29%; 0.4 : 15.52%
0.5 : 61.64%; 0.6 : 4.36%
0.7 : 2.78%; 0.8 : 1.43%
0.9 : 1.42%; 1.0 : 6.67%

Glasgow Coma Scale Score categorical point 13 Classes
3 : 4.57% 4 : 0.72%
5 : 0.44% 6 : 2.37%
7 : 3.44% 8 : 4.03%
9 : 3.63% 10 : 6.61%
11 : 4.48% 12 : 1.22%
13 : 3.23% 14 : 11.48%
15 : 53.80%

Urine Data Measured (M) binary - False: 55.64% True: 44.36%
ALT or AST (M) binary - False: 97.73% True: 2.27%
FiO2 (M) binary - False: 88.80% True: 11.20%
GCS (M) binary - False: 78.06% True: 21.94%
PaO2 (M) binary - False: 95.45% True: 4.55%
Lactic Acid (M) binary - False: 95.61% True: 4.39%
Serum Creatinine (M) binary - False: 92.79% True: 7.21%

B.1 Data preprocessing
Detailed description of the data preprocessing steps are available from our
previous publication [27] in Section 1 of the supplementary material 1. However,
for completeness we highlight some of the main approaches. For the acute
hypotension dataset we included adult patients (18 or over) in the MIMIC-III
dataset with at least 24 hours of data, aggregating 48 hours of clinical variables
from patients with seven or more mean arterial pressure (MAP) values of 65
mmHg or less, indicating acute hypotension. Missing values were replaced with
the last available data, while an indicator variable was used to denote whether
a value was measured or not. For the sepsis dataset we included adult patients
only who had any suspicious infections based on history of administering
antibiotics. We included all the variables from at least 44 hours before the sus-
pected infection and up to 28 hours after. The missing data was imputed using
nearest neighbour method. More detailed information is available in https:

1https://static-content.springer.com/esm/art%3A10.1038%2Fs41597-022-01784-7/
MediaObjects/41597_2022_1784_MOESM4_ESM.pdf

https://static-content.springer.com/esm/art%3A10.1038%2Fs41597-022-01784-7/MediaObjects/41597_2022_1784_MOESM4_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41597-022-01784-7/MediaObjects/41597_2022_1784_MOESM4_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41597-022-01784-7/MediaObjects/41597_2022_1784_MOESM4_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41597-022-01784-7/MediaObjects/41597_2022_1784_MOESM4_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41597-022-01784-7/MediaObjects/41597_2022_1784_MOESM4_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41597-022-01784-7/MediaObjects/41597_2022_1784_MOESM4_ESM.pdf
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Table B2: Variables in the sepsis dataset. For each variable, the data type,
the unit in which it is expressed, and the distribution statistics are presented.

Variable Name Data Type Unit Descriptive Statistics

Age numerical years Median: 66.95 (Q1: 54.21, Q3: 78.70)
Heart Rate (HR) numerical bpm Median: 86.75 (Q1: 75.40, Q3: 98.86)
Systolic BP numerical mmHg Median: 118.17 (Q1: 105.33, Q3: 134.20)
Mean BP numerical mmHg Median: 77.25 (Q1: 69.12, Q3: 87.00)
Diastolic BP numerical mmHg Median: 56.81 (Q1: 48.60, Q3: 65.67)
Respiratory Rate (RR) numerical bpm Median: 20.00 (Q1: 16.86, Q3: 23.83)
Potassium (K) numerical meq/L Median: 4.00 (Q1: 3.70, Q3: 4.30)
Sodium (Na) numerical meq/L Median: 139.00 (Q1: 136.00, Q3: 142.00)
Chloride (Cl) numerical meq/L Median: 105.00 (Q1: 101.00, Q3: 109.00)
Calcium (Ca) numerical mg/dL Median: 8.30 (Q1: 7.84, Q3: 8.74)
Ionised Ca numerical mg/dL Median: 1.13 (Q1: 1.08, Q3: 1.18)
Carbon Dioxide (CO2) numerical meq/L Median: 26.00 (Q1: 22.75, Q3: 29.00)
Albumin numerical g/dL Median: 2.90 (Q1: 2.50, Q3: 3.40)
Hemoglobin (Hb) numerical g/dL Median: 10.00 (Q1: 9.04, Q3: 11.20)
pH numerical - Median: 7.40 (Q1: 7.35, Q3: 7.44)
Arterial Base Excess numerical meq/L Median: 0.00 (Q1: -2.00, Q3: 3.15)
Bicarbonate (HCO3) numerical meq/L Median: 25.00 (Q1: 22.00, Q3: 28.00)
FiO2 numerical fraction Median: 0.40 (Q1: 0.40, Q3: 0.50)
Glucose numerical mg/dL Median: 129.67 (Q1: 109.00, Q3: 157.60)
Blood Urea Nitrogen numerical mg/dL Median: 24.00 (Q1: 15.00, Q3: 41.00)
Creatinine numerical mg/dL Median: 1.00 (Q1: 0.70, Q3: 1.60)
Magnesium (Mg) numerical mg/dL Median: 2.03 (Q1: 1.90, Q3: 2.27)
SGOT numerical u/L Median: 41.00 (Q1: 25.00, Q3: 86.00)
SGPT numerical u/L Median: 32.00 (Q1: 18.00, Q3: 69.00)
Total Bilirubin numerical mg/dL Median: 0.70 (Q1: 0.40, Q3: 1.80)
White Blood Cell Count numerical E9/L Median: 11.20 (Q1: 8.20, Q3: 15.20)
Platelets Count numerical E9/L Median: 207.85 (Q1: 141.00, Q3: 296.00)
paO2 numerical mmHg Median: 105.25 (Q1: 82.57, Q3: 140.00)
paCO2 numerical mmHg Median: 40.22 (Q1: 35.25, Q3: 46.09)
Lactate numerical mmol/L Median: 1.60 (Q1: 1.10, Q3: 2.30)
Total Input Fluids numerical mL Median: 6569.08 (Q1: 2540.00, Q3: 13047.66)
Input 4H numerical mL Median: 80.01 (Q1: 20.34, Q3: 327.50)
Max Vasopressors in 4H numerical mcg/kg/min Median: 0.0002 (Q1: 0.00, Q3: 0.0017)
Total Volume Output numerical mL Median: 3893.00 (Q1: 1300.00, Q3: 10070.00)
Output 4H numerical mL Median: 248.00 (Q1: 105.00, Q3: 460.00)
Gender binary - Male: 56.46% Female: 43.54%
Readmission of Patient binary - False: 67.75% True: 32.25%
Mechanical Ventilation binary - False: 46.89% True: 53.11%
Temperature (Temp) categorical Celsius 3 Classes

<35.05: 8.64%
35.05-38: 79.65%
>38: 11.71%

GCS categorical point 13 Classes
3: 5.10% 4: 0.76%
5: 0.93% 6: 4.51%
7: 3.72% 8: 4.12%
9: 5.17% 10: 7.93%
11: 9.68% 12: 3.98%
13: 3.45% 14: 13.03%
15: 37.61%

Pulse Oximetry Saturation categorical % 10 Classes
[50.00,94.00): 9.34% [94.00,95.29): 10.54%
[95.29,96.14): 10.11% [96.14,96.80): 9.49%
[96.80,97.40): 9.77% [97.40,98.00): 8.70%
[98.00,98.67): 12.05% [98.67,99.25): 9.96%
[99.25,99.83): 9.99% [99.83,100.00]: 10.05%

Partial Thromboplastin Time categorical s 10 Classes
[0.00,24.50): 9.69% [24.50,26.50): 9.92%
[26.50,28.10): 10.35% [28.10,29.74): 10.02%
[29.74,31.70): 9.76% [31.70,34.20): 10.09%
[34.20,37.60): 10.08% [37.60,44.50): 10.04%
[44.50,60.90): 10.04% [60.90,162.40]: 9.99%

Prothrombin Time categorical s 10 Classes
[8.50,12.04): 10.00% [12.04,12.90): 9.77%
[12.90,13.40): 9.68% [13.40,13.80): 9.67%
[13.80,14.30): 10.54% [14.30,14.90): 10.03%
[14.90,15.80): 10.14% [15.80,17.40): 9.99%
[17.40,21.54): 10.20% [21.54,193]: 9.98%

INR categorical - 10 Classes
[0.10,1.04): 10.00% [1.04,1.10): 0.48%
[1.10,1.19): 17.55% [1.19,1.20): 2.15%
[1.20,1.30): 16.88% [1.30,1.31): 11.23%
[1.31,1.46): 11.68% [1.46,1.66): 10.02%
[1.66,2.2): 9.79% [2.2,19.8]: 10.22%

//static-content.springer.com/esm/art%3A10.1038%2Fs41597-022-01784-7/
MediaObjects/41597_2022_1784_MOESM4_ESM.pdf
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https://static-content.springer.com/esm/art%3A10.1038%2Fs41597-022-01784-7/MediaObjects/41597_2022_1784_MOESM4_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41597-022-01784-7/MediaObjects/41597_2022_1784_MOESM4_ESM.pdf
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Appendix C UMAP and t-SNE parameters
In this study, we used t-SNE and UMAP algorithms to perform dimensionality
reduction on our datasets and highlight the differences between the results of
the three methods under analysis. The following parameters were used for each
algorithm:

t-SNE:

Library: scikit-learn version 1.2.2
Parameters for sepsis: n_components = 2, n_iter = 500,

learning_rate = 100, perplexity = 50
Parameters for acute hypotension: n_components = 2, n_iter = 100,

learning_rate = 1000, perplexity = 30

UMAP:

Library: umap-learn version 0.5.3
Parameters: n_neighbors = 5, spread = 5, min_dist = 0.5

Appendix D Joint distributions of variables
We have carried out an analysis of a set of variables that are clinically known
to follow a joint distribution, namely systolic, diastolic and mean arterial
blood pressure. This was to investigate whether CA-GAN can capture joint
distributions of variables and whether synthetic data are clinically meaningful,
where we know that systolic blood pressure is always higher than diastolic blood
pressure. Using a scatter plot in Figure D4 we show that the joint distribution
of real data is similar to that of synthetic data.

Following from this, we have also implemented several sanity checks based
on clinical knowledge to ensure that the generated synthetic data is clinically
meaningful. In this respect, we have performed checks to investigate whether
systolic BP values are always lower than diastolic. From our analysis, in the real
sepsis dataset, 99.94% of values of these variables were correct; that is, systolic
values were always lower than the diastolic values. In the synthetic sepsis
dataset, this figure was 99.93%, with only 0.01% difference between the real
and the synthetic dataset. On the other hand for the hypotension dataset there
were 99.86% correct values of systolic and diastolic variables versus 99.84% in
the synthetic dataset, representing a 0.02% difference. This analysis suggests
that our architecture captures the structure of the real data quite well.
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Fig. D4: Joint distribution plot of real sepsis data and CA-GAN synthetic
data for the variables Systolic blood pressure, Diastolic blood pressure and Mean
arterial pressure.
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Appendix E Summary of distance metrics

Table E3: Statistics for KL-Divergence and Maximum Mean Discrepancy
between the distribution of real and synthetic data.

KL-divergence MMD

SMOTE WGAN-GP* CA-GAN SMOTE WGAN-GP* CA-GAN

MEDIAN 0.03407 0.02711 0.00629 0.00752 0.00217 0.00089
MEAN 0.05754 0.13518 0.14128 0.01500 0.05861 0.04790
STD DEV 0.07222 0.22330 0.31578 0.02385 0.09311 0.08457
MAX 0.28191 0.91622 1.36841 0.09954 0.25091 0.24806
MIN 0.00068 0.00010 0.00005 0.00047 0.00001 0.00001

(a) Acute hypotension data

KL-divergence MMD

SMOTE WGAN-GP* CA-GAN SMOTE WGAN-GP* CA-GAN

MEDIAN 0.02296 0.06105 0.02292 0.00349 0.01299 0.00377
MEAN 0.09946 0.09282 0.06656 0.00583 0.03848 0.02505
STD DEV 0.29030 0.09704 0.08906 0.00702 0.13482 0.11603
MAX 1.88754 0.33564 0.39555 0.02948 0.90096 0.77536
MIN 0.00035 0.00240 0.00199 0.00002 0.00041 0.00003

(b) Sepsis data
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Appendix F Description of Downstream
Regression Task

For this task, the BiLSTM is trained on the first 20 hours for hypotension
and 10 hours for sepsis of the patients’ values to predict the next hour, using
a sliding window approach. To ensure the fairness of our result, 15% of the
time series data points of Black patients and a proportional representation of
different genders were set apart as a test set. To account for the stochasticity
of the models, we generated five synthetic datasets with CA-GAN. Then, we
trained 5 BiLSTM models on each dataset for a total of 25 BiLSTM models
(5x(5 per dataset)). The predictions of the trained models were then compared
with the test dataset, and the resulting error was averaged across the five
models and, subsequently, the five datasets.

Fig. F5: Diagram of BiLSTM Model Training for Continuous Variable
Prediction.
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Appendix G UMAP Plots

Fig. G6: UMAP two-dimensional representations of the acute hypotension
dataset for Black patients.

Fig. G7: UMAP two-dimensional representations of the sepsis dataset for
Black patients.
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