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Abstract

Background

COVID-19 remains a complex disease in terms of its trajectory and the diversity of outcomes

rendering disease management and clinical resource allocation challenging. Varying symp-

tomatology in older patients as well as limitation of clinical scoring systems have created the

need for more objective and consistent methods to aid clinical decision making. In this

regard, machine learning methods have been shown to enhance prognostication, while

improving consistency. However, current machine learning approaches have been limited

by lack of generalisation to diverse patient populations, between patients admitted at differ-

ent waves and small sample sizes.
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Objectives

We sought to investigate whether machine learning models, derived on routinely collected

clinical data, can generalise well i) between European countries, ii) between European

patients admitted at different COVID-19 waves, and iii) between geographically diverse

patients, namely whether a model derived on the European patient cohort can be used to

predict outcomes of patients admitted to Asian, African and American ICUs.

Methods

We compare Logistic Regression, Feed Forward Neural Network and XGBoost algorithms

to analyse data from 3,933 older patients with a confirmed COVID-19 diagnosis in predicting

three outcomes, namely: ICU mortality, 30-day mortality and patients at low risk of deteriora-

tion. The patients were admitted to ICUs located in 37 countries, between January 11, 2020,

and April 27, 2021.

Results

The XGBoost model derived on the European cohort and externally validated in cohorts of

Asian, African, and American patients, achieved AUC of 0.89 (95% CI 0.89–0.89) in predict-

ing ICU mortality, AUC of 0.86 (95% CI 0.86–0.86) for 30-day mortality prediction and AUC

of 0.86 (95% CI 0.86–0.86) in predicting low-risk patients. Similar AUC performance was

achieved also when predicting outcomes between European countries and between pan-

demic waves, while the models showed high calibration quality. Furthermore, saliency anal-

ysis showed that FiO2 values of up to 40% do not appear to increase the predicted risk of

ICU and 30-day mortality, while PaO2 values of 75 mmHg or lower are associated with a

sharp increase in the predicted risk of ICU and 30-day mortality. Lastly, increase in SOFA

scores also increase the predicted risk, but only up to a value of 8. Beyond these scores the

predicted risk remains consistently high.

Conclusion

The models captured both the dynamic course of the disease as well as similarities and dif-

ferences between the diverse patient cohorts, enabling prediction of disease severity, identi-

fication of low-risk patients and potentially supporting effective planning of essential clinical

resources.

Trial registration number

NCT04321265.

Author summary

COVID-19 remains a complex disease, making it challenging to estimate the risk of dete-

rioration of critically ill patients and consequently allocation of clinical resources, such as

ventilators. As a result, there is a need to support clinical decision making through objec-

tive methods and address some of the limitations of the current clinical scoring systems.

In response, we developed machine learning models using routine clinical data of patients

from 37 countries worldwide, including 18 European countries. We find that: i) machine
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learning models can predict outcomes in patients from diverse European countries, that is

which patients have a low risk of deterioration and which may require increased care such

that resources are allocated efficiently; ii) routine clinical data from European patients can

be used to predict outcomes in non-European patients, namely those admitted in Asian,

African, and American intensive care units, without significantly affecting the perfor-

mance, and iii) routine clinical data collected during the first COVID-19 pandemic wave,

can be used to predict the risk of deterioration of patients admitted during subsequent

waves. Our study is the first step towards improving standardisation and equity of critical

care across healthcare institutions and further afield across diverse countries and

territories.

Introduction

The coronavirus pandemic continues to strain health care systems globally [1]. While much

has been discovered about the disease aetiology, many open questions remain around disease

trajectories, considering diverse patient outcomes in terms of mortality rate as well as the need

for ventilation. Several studies [2–4] have found that 3% to 79% of hospitalised patients

required invasive mechanical ventilation (MV), with a significant heterogeneity in ICU out-

comes [5]. These aspects render clinical resource allocation challenging to plan. Early risk

stratification can help in early identification of patients with a high risk of deterioration and

adjust treatment course. However, varying symptomatology, especially pronounced in older

patients, still includes several unknowns. Furthermore, the current scoring systems in clinical

practice are limited by small sample size and consequently have low predictive power, espe-

cially for prediction of mortality in COVID-19 patients [6].

More objective and consistent methods are required that can assist clinicians in discrimi-

nating between patients with low risk of deterioration and those that may require increased

care, estimating risk in a continuous manner considering evolution of the patients’ state as

well as administration of therapeutical interventions. Assisting clinicians in this manner

becomes crucial for countries with limited resources and varying expertise, especially facing a

novel disease (such as COVID-19) where reliable models to guide effective allocation of essen-

tial resources and improve patient outcomes are scarce [7]. Furthermore, more objective

assessment methods have the potential to mitigate inequalities in allocation of medical

resources [8,9].

Machine learning approaches have shown the potential to enhance prognostication, by cap-

turing non-linear relationships between variables to predict outcomes of interest. However,

current efforts have been limited by lack of generalisation to diverse patient populations,

between patients admitted at different waves and small sample sizes. While there are many

studies investigating prediction of outcomes in COVID-19 patients [10–14], only a handful

have investigated generalisability of the models across countries with diverse populations

located in different continents using imaging [15] and no studies have been found that used

routinely collected data, as outlined in [15]. Indeed, a recent review on chest imaging, empha-

sised the importance of validation dataset to assess generalisability of the model to other

cohorts, rather than only on the sampled population [16].

Therefore, the main objective of this work is to investigate whether the use of routinely col-

lected Electronic Health Records (EHR) data in older patients with COVID-19, coupled with

machine learning (ML) algorithms can generalise to diverse patients’ populations, to estimate

the risk of ICU and 30-day mortality, as well as identify patients at low risk of deterioration,

PLOS DIGITAL HEALTH COVID-19 generalisable machine learning model

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000136 November 8, 2022 3 / 20

https://doi.org/10.1371/journal.pdig.0000136


likely to survive without a therapeutic intervention. We hypothesised that a machine learning

model derived in a cohort of COVID-19 older patients can be used to predict clinically rele-

vant outcomes of both, geographically and temporally (between pandemic waves) diverse

cohorts.

Methods

To address our hypothesis, we developed and validated several machine learning models,

derived from data collected from 3,933 older patients with a confirmed COVID-19 diagnosis,

admitted to ICUs located in 37 countries, between January 11, 2020, and April 27, 2021 as part

of the COVIP study (trial registration number NCT04321265, March 25, 2020). We evaluate

the resulting models in a i) retrospective study with validation between the European countries

to assess inter-country generalisability of the European model; ii) prospective study between

the pandemic waves to evaluate the ability of the model derived from a cohort of patients

admitted during a COVID-19 wave to generalise in predicting outcomes in patients admitted

to European ICUs during the subsequent wave; and iii) external validation in a cohort of non-

European patients, to evaluate whether the model derived from the overall European cohort

can be used to predict outcomes in highly diverse patients, such as those admitted to Asian,

African and American ICUs.

For each of the three study designs, we investigated whether the models’ predicted probabil-

ities match the actual observed probabilities of each of the three outcomes, namely quality of

the model calibration. We also performed saliency analysis to identify the top-ranked variables

that contributed most to the prediction of each of the three outcomes of interest for each study

design.

Outcomes definition

Primary outcomes in this study were: 1) mortality prediction, either in the ICU or 30 days

after ICU admission; and 2) early identification of patients at low risk of deterioration, defined

as patients who survived in the ICU without receiving any therapeutic intervention (i.e. inva-

sive or non-invasive mechanical ventilation, administration of vasopressors, renal replacement

therapy, and tracheostomy).

Study design

Our analysis primarily focuses on the European patient cohort, while we used the non-Euro-

pean cohort as the external validation dataset to investigate the generalisability of the models

when encountering diverse patient populations, such as those from different continents. The

overall workflow and study design is depicted in Fig 1.

Initially, we retrospectively assessed the generalisability of the models among the European

cohort, evaluating the predictive performance of the models derived from 16 European coun-

tries (as shown in Fig 2) using the patient cohort from France (that had the highest number of

ICU admissions) as the validation. Furthermore, we evaluated inter-country generalisability of

the European model, by evaluating its performance on top-nine European countries (based on

the highest number of ICU admissions) separately, each time deriving the model from the

patient cohorts of the remaining countries, in a leave one country out approach.

Following from this, we prospectively assessed the temporal generalisability of the models

between different waves, by deriving a model from a patient cohort admitted before December

1st, 2020 (our cut-off date) and validating in a cohort of patients admitted on or after Decem-

ber 1st, 2020. The cut-off date was chosen based on the availability of the data as well as peak of
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cases per million in Europe between the first wave (peaking on November 7th, 2020) and the

subsequent wave (peaking around January 11th, 2020) as shown in Fig C in S2 Text.

Lastly, we externally evaluated the predictive performance of the models derived from the

overall European patient cohort to assess their generalisability in a validation cohort of patients

admitted to Asian, African, and American ICUs.

Fig 1. Description of variables, algorithms, and outcomes as well as pre-processing steps for the overall dataset (panel A). Retrospective validation of the model

derived on the European cohort based on cross-validation as well as external validation on France as the country with highest ICU admissions (panel B), while

the results for the rest of the European countries are shown in Tables A-C in S6 Text. Prospective validation of the model derived on the European cohort of

patients admitted to ICUs before the cut-off date (December 1st, 2020) and validated on the European cohort of patients admitted to ICUs after the cut-off

date, during the subsequent pandemic wave (panel C). External validation of the model derived on the overall European cohort and validated on the cohort of

patients admitted to Asian, African and American ICUs (panel D). Note, EU is an abbreviation of Europe.

https://doi.org/10.1371/journal.pdig.0000136.g001

Fig 2. Map of the countries and continents represented in our dataset (left panel). Number of patients for the overall cohort as well as mortality rate per

country (right panel). Country and territory abbreviations are detailed in S9 Text. (Map created with QGIS v.3.26 based on data from Natural Earth).

https://doi.org/10.1371/journal.pdig.0000136.g002
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For each study design we defined three outcomes of interest, namely ICU mortality, 30-day

mortality and identification of low-risk patients. For the internal evaluation of each study

design, namely of the European cohort leaving out France, European cohort admitted before

the cut-off date December 1st, 2020, and the overall European cohort, we used stratified 5-fold

cross-validation with 10 times repetition, starting with different initial random states to miti-

gate the randomness effects of a single train-test split.

Ethics approval and consent to participate

The study was approved by the Ethics Committee of the University of Duesseldorf, Germany.

Institutional research ethic board approval was obtained from each study site, as a prerequisite

for participation in the study.

Clinical data sources and settings

The study included older patients (over 70 years) admitted to ICUs originating from 37 coun-

tries around the world, with a confirmed diagnosis of COVID-19 based on a positive polymer-

ase chain reaction (PCR) test. National coordinators of the study oversaw ICUs recruitment,

obtaining national and local ethical approval, and supervising patient recruitment. Ethical

approval was mandatory to participate in the study. The study was in line with the European

Union General Data Privacy Regulation (GDPR) directive as part of the multi-centre COVIP

clinical trial (ID: NCT04321265), where a database was established to facilitate the information

sharing of electronic case report forms (eCRF) of each subject on a secure server at the Aarhus

University, Denmark.

Study population

All the patients involved in this study were at least 70 years old, admitted to 217 different ICUs

from 172 cities in 37 independent countries between January 11, 2020, and April 27, 2021. The

dataset included overall 3,933 patients with a unique eCRF record since each patient could

only be entered into the database once regardless of their transfer to another ICU or readmis-

sion. After applying the selection criteria 3,474 patients remained, out of which 2,858 patients

were admitted in European ICUs, while 616 patients were admitted in Asian, African and

American ICUs. Patients were excluded due to having negative sarscov2 test and significant

missing information, as shown in selection criteria diagram in S8 Text. All patients were fol-

lowed up through a phone interview for their survival status after 30-days and 3-months from

the ICU discharge.

Study data and variables of interest

All the participating centres reported the patients’ information using consistent electronic case

report forms (eCRF). Collected demographic information included age, sex, height, weight,

and BMI. Furthermore, information about the presence of symptoms before hospitalization

and the duration of hospital stays before ICU admission were also recorded.

Sub-scores of sequential organ failure assessment (SOFA): respiratory, cardiovascular,

hepatic, coagulation, renal, and neurological systems were calculated at the ICU admission. Six

different pre-existing comorbidities were also documented in eCRF form: diabetes, ischemic

heart disease, renal insufficiency, arterial hypertension, pulmonary comorbidity, and conges-

tive heart failure. The definitions of these comorbidities are available in S1 Text.

Several laboratory measurements were also retrieved for the patients during their ICU

admission. The partial pressure of oxygen (PaO2) and the fraction of inspired oxygen (FiO2)
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were recorded based on the first arterial blood gas (ABG) analysis. The highest measured val-

ues of serum bilirubin, serum creatinine, c-reactive protein, and leukocytes count were docu-

mented on admission day. The serum lactate concentration was reported on both the first and

second days of ICU admission separately. Furthermore, the minimum available measurements

of thrombocyte count and lymphocyte count were also recorded.

Information on drug therapy during patients’ ICU stays included antibiotics, corticoste-

roids, and antiviral drugs, while also documenting bacterial co-infection. Finally, therapeutic

interventions including invasive and non-invasive ventilation, vasopressor use, renal replace-

ment therapy, tracheostomy, as well as their day of occurrence after ICU admission were also

available in the dataset.

Statistical analysis

We analysed baseline characteristics of patients using medians (IQRs) for continuous variables

and frequencies (percentages) for categorical variables. We used the Kruskal–Wallis test

(ANOVA) for continuous variables and the chi-square test for categorical variables to compare

subgroups of alive and deceased patients.

Data preparation

After removing inconsistently recorded information, we standardised variables into unique

measurement units. For example, we converted PaO2 values with kilopascals (kPa) to milli-

metres of mercury (mmHg). Then we transformed ICU length of stay, mortality time and

intervention start time into daily units. We converted textual notes of drug usage into binary

variables indicating whether a drug was administered. We also extracted the SOFA sub-scores

for each patient from their textual clinical notes and converted them to 6 separate variables

with values ranging from 0 to 4. However, in the case of an incorrectly reported text, they were

considered as missing values. We also checked the total SOFA score for consistency, summing

all the sub-scores.

To improve interpretability, we defined four clinically meaningful intervals for each inter-

vention, namely 0 to 2 days, 3 to 6 days, 7 to 30 days, and after 30 days, which then became sep-

arate binary variables. Furthermore, to mitigate the effect of noisy data and outliers in the

dataset, we defined clinically valid intervals for the relevant variables and those variables out-

side of the intervals were considered as missing values. Since machine learning models typi-

cally cannot handle missing data, we imputed the missing information of patients in the

dataset in several steps. We considered unreported values of bacterial co-infections and those

reported as “unknown” as missing values. Then, we used the median for continuous and mode

for categorical variables to impute the missing values in the rest of the dataset. Finally, we

transformed each continuous variable individually within a zero to one range, maintaining

their distribution, while we encoded the rest of the categorical variables using the one-hot

encoding scheme.

To mitigate potential data leakage during the model derivation and validation, all the pre-

processing steps were conducted after the data was split in train-test sets. Consequently, during

the internal 5-fold cross-validation experiment design, the patients were divided into training

folds and test folds first, and only then all the transformation steps were applied over the data.

Furthermore, we excluded variables indicating clinical therapeutic interventions after 30 days

for the 30-day mortality prediction outcome; and excluded all the variables that indicated ther-

apeutic intervention when predicting the low-risk outcome. We also used the 3-month out-

come to ensure consistency of the primary outcome and allay the concerns of censoring bias.
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Model development and validation

During model development we compared the performance of three algorithms, namely,

Extreme Gradient Boosting (XGBoost) [17] as the primary model with Feed-Forward (FF)

neural network and Logistic Regression (LR) [18] to predict ICU mortality, 30-days mortality

after ICU admission, and low-risk patients admitted to the ICU. XGBoost is an ensemble of

decision trees that provides robust predictive performance with learning complex and non-lin-

ear relationships in data using an ensemble learning technique called boosting. Boosting is an

iterative learning process, sequentially building many models that correct the deficiencies of

the preceding model. Even though deep neural networks provide better predictive perfor-

mance in unstructured datasets, XGBoost has shown great predictive performance for struc-

tured, tabular data [19].

To compare the performance of XGBoost, we also implemented Feed-Forward as a deep

neural network and Logistic Regression as a statistical baseline competitor. Feed-Forward

model was a two-layer neural network with 64 and 16 neurons in the first and second layer

respectively, using sigmoid activation function. Model parameters were randomly initialized

based on Xavier normal method, trained for 100 epochs with batch size 32, and optimized

using the Adam optimizer algorithm. Logistic Regression is a statistical method, investigates

the relation of the outcome variable with the input variables, and typically considered as a

baseline algorithm in clinical classification tasks.

All the three models were tuned for the best hyperparameters on the internal evaluation

cohorts in each study design and outcome definitions. The models’ hyperparameters were

optimized through exhaustive grid-search for maximizing the F-1 score metric and set for the

final internal and external evaluation.

Experimental evaluation

Training and evaluation of the models was based on 5-fold stratified cross-validation with

10-times repetition starting with different random states. Stratification ensures that outcome

distribution in each fold is representative of the distribution of outcomes across the entire

study population. Predictive performance of the models was evaluated using area under the

receiver operator characteristic curve (AUC) and area under the precision-recall curve

(AUPRC). Furthermore, since machine learning models can be discriminative but with low

calibration quality, the calibration curve was plotted for all the analyses. The calibration curve

shows the actual class probabilities against the models’ probability predictions and is evaluated

using Brier scores (a lower Brier score indicates higher calibration quality). To assess the pre-

dictive performance, additional metrics were also calculated, including Positive Predictive

Value (PPV), Negative Predictive Value (NPV), F-1 score, and Matthews correlation coeffi-

cient (MCC), shown in S4 Text. We note that in addition to MCC that considers the class

imbalance [20], other methods could also be applicable, such as partial AUC [21] or subgroup

analysis [22].

Model interpretation

We used SHAP (Shapley Additive exPlanations) to interpret the output of the predictive mod-

els [23]. SHAP is a powerful method that explains how the model makes individual predictions

by deconstructing every prediction into the sum of contributions from each input variable,

known as SHAP values. SHAP values are a game-theoretic approach to model interpretability

revealing how the input variables influence the final model’s predictions at the instance level

and throughout the entire population.
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In this study a SHAP value was calculated for each run of the 5-fold cross-validation

(repeated 10 times) to precisely capture the influence of each variable during the model evalua-

tion. These values were then plotted into a Bee swarm plot, an informative display of SHAP

values that shows the relative importance of variables and their actual relationships with the

predicted outcome.

Results

Study population

The overall dataset contained 3,933 electronic health records of patients, out of which 3,474

patients remained after applying the exclusion criteria as shown in the cohort selection dia-

gram in S8 Text. The final cohort contained patients originating from 37 different countries

(17 European and 20 non-European), admitted to ICUs between January 11, 2020, and April

27, 2021, shown in Fig 2.

The European cohort included 2,858 patients with an average mortality rate of 45% both in

ICU and 30 days after ICU admission, while 13% of patients were at low risk of deterioration.

European patients’ age median was 75 years (IQR, [72–78]), with 30% female, and median

length of ICU stay was 13 days (IQR, [6–22]). The distribution of patients among the European

countries, including the number of patients as well as ICU mortality rate per country is shown

in Fig 3, while the distribution of length of stay and mortality is shown in Figs A and B in S2

Text respectively.

France was chosen as the validation cohort to assess the generalisability among the Euro-

pean cohort because it had the highest number of patients in the database (647, or 22% of the

European cohort), with 40% mortality rate (ICU and 30-day) and 19% of patients with a low

risk of deterioration. Furthermore, we also evaluated generalisability of the European predic-

tive model on a per-country basis using leave one country out approach. Namely, we selected

nine European countries with the highest number of ICU admissions and separately evaluated

each corresponding cohort on the model derived from the remaining European countries as

shown in S6 Text.

We prospectively evaluated temporal generalisability of our European model using a cohort

of 715 (25%) patients admitted to ICU after December 1st, 2020, with a median age of 75 years

Fig 3. Distribution of patients admitted to European ICUs as a percentage (%) of the overall European cohort (left panel). Number of patients admitted to

European ICUs as well as the mortality rate per European country, shown as a ratio between survivors (blue) and non-survivors (grey) (right panel). Country

and territory abbreviations are detailed in S9 Text.

https://doi.org/10.1371/journal.pdig.0000136.g003
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(IQR, [72–79]), median ICU length of stays 11 days (IQR, [6–20]) and having 32% female

patients. The model was derived in a cohort of 2,143 patients with a median age of 75 years

(IQR, [72–78]), median ICU length of stay of 14 days (IQR, [8–23]) and having 28% female

patients.

Mortality rate in the ICU and 30-day for the derivation cohort (up to cut-off date of Decem-

ber 1st, 2020) was 41% and 42% respectively. However, after the cut-off date it increased to

55% and 52% posing a significant challenge for model generalisability. Rate of low-risk patients

admitted to ICUs remained at a similar rate of 13% for both cohorts.

Finally, the non-European cohort contained 616 patients that had higher ICU and 30-day

mortality at 54% in comparison to the European cohort as well as higher rate of low-risk

patients admitted to ICU at 25%. Also, the median age of the non-European cohort was 76

years (IQR, [73–81]), with 40% patients female, and the median duration of ICU stay of 7 days

(IQR, [4–10]). Detailed information of patient distribution among the non-European coun-

tries with a summary of the ICU mortality rate and the number of patients per country are

visualised in Fig 4 while the distribution of length of stay and mortality is shown in Figs A and

B in S2 Text respectively.

Shown in Table 1 are the detailed characteristics of patients of European and non-European

cohorts based on the ICU mortality, while the patient characteristics for the 30-day mortality

and low-risk patients are shown in Tables A and B in S7 Text respectively.

Performance evaluation

All the three algorithms showed similar performance during the evaluation of the model

derived in the European cohort (excluding patients admitted to French ICUs) and validated

on the French patient cohort. Although, XGBoost had a higher performance with AUC of 0.82

(95% CI 0.82–0.82), 0.79 (95% CI 0.79–0.79) and 0.86 (95% CI 0.86–0.87), for the three out-

comes, indicating a high generalisability of the model as shown in Fig 5. XGBoost showed

highest performance also in terms of Average Precision (AP), as well as calibration quality

(lowest Brier score) shown in Figs D-F in S3 Text. Additional performance metrics including

positive and negative predictive value (PPV and NPV), F-1 score and Matthews correlation

coefficient (MCC) are shown in S4 Text. Furthermore, we also assessed per country

Fig 4. Distribution of patients admitted to non-European ICUs as a percentage of the overall non-European cohort (left panel). Number of patients admitted

to non-European ICUs as well as the mortality rate per non-European country, shown as a ratio between survivors (blue) and non-survivors (grey) (right

panel). Country and territory abbreviations are detailed in S9 Text.

https://doi.org/10.1371/journal.pdig.0000136.g004
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generalisability of our model by evaluating its performance on the nine European countries

(with the highest number of ICU admissions) separately, each time deriving the model from

the patient cohorts of the remaining countries, in a leave one country out approach. The

results of these analyses are shown in Tables A-C in S6 Text for each of the outcomes.

In the prospective evaluation of the model on the cohort of European patients admitted

after the cut-off all three algorithms showed a similar performance in predicting 30-day mor-

tality with AUC of 0.77 (95% CI 0.77–0.77), while XGBoost was superior in predicting ICU

mortality with AUC of 0.83 (95% CI 0.83–0.83). In predicting low-risk patients, both FF and

XGBoost showed similar performance with AUC of 0.85 (95% CI 0.85–0.85). Performance of

Table 1. Patient characteristics of the European and the non-European cohort, based on ICU mortality outcome. Patient characteristics for the two other outcomes

of interest, namely 30-day mortality and early identification of patients at low risk of deterioration are available in Tables A and B in S7 Text respectively.

ICU European non-European

Variables Alive Dead p-value Alive Dead p-value

Patients (%) 1574 (0.55) 1284 (0.45) - 284 (0.46) 332 (0.54) -

Age (year) 74 [72,78] 75 [72,79] <0.001 75 [72,80] 77 [73,83] 0.003

Sex (Female) 477 (30.3) 350 (27.3) 0.081 115 (40.5) 129 (38.9) 0.74

Weight (kg) 80 [72,90] 80 [72,90] 0.313 78 [70,89] 78 [70,87] 0.621

Height (cm) 170 [165,178] 170 [165,177] 0.162 165 [159,170] 166 [160,173] 0.195

BMI 27.6 [24.8,30.9] 27.5 [24.7,30.8] 0.894 27.9 [24.9,33.2] 28.3 [25.6,31.1] 0.737

SOFA overall score 4 [3,7] 6 [4,9] <0.001 4 [2,5] 7 [5,10] <0.001

Presence of diabetes 490 (31.2) 462 (36.2) 0.006 156 (55.1) 187 (56.8) 0.73

Ischemic heart disease 318 (20.4) 308 (24.3) 0.015 78 (27.7) 92 (28.6) 0.875

Renal comorbidity 193 (12.3) 255 (20.0) <0.001 29 (10.3) 80 (24.5) <0.001

Arterial hypertension 1029 (65.6) 857 (66.9) 0.484 174 (61.5) 233 (71.3) 0.014

Pulmonary disease 341 (21.7) 301 (23.6) 0.241 47 (16.6) 59 (18.4) 0.642

Congestive heart failure 203 (13.0) 205 (16.2) 0.019 33 (11.8) 48 (14.8) 0.34

Mechanical ventilation 979 (62.2) 1142 (88.9) <0.001 69 (24.3) 271 (81.6) <0.001

Vasopressors 936 (59.5) 1146 (89.3) <0.001 38 (13.4) 184 (55.4) <0.001

Renal replacement therapy 150 (9.5) 317 (24.7) <0.001 16 (5.6) 52 (15.7) <0.001

Non-invasive ventilation 412 (26.2) 340 (26.5) 0.888 74 (26.1) 156 (47.0) <0.001

Tracheostomy 350 (22.2) 241 (18.8) 0.026 15 (5.3) 13 (3.9) 0.537

ICU length of stay (day) 12 [6,26] 14 [7,22] 0.097 6 [3.8,10] 7 [4,11] 0.293

https://doi.org/10.1371/journal.pdig.0000136.t001

Fig 5. AUC performance of each model in validation on patients admitted in ICUs in France as the country with the highest number of ICU admissions

for each of the three outcomes. AUC and AUPRC performance graphs of each model in internal cross-validation are available in Fig A in S3 Text.

https://doi.org/10.1371/journal.pdig.0000136.g005
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each algorithm in terms of AUC is shown in Fig 6, while detailed performance metrics are

shown in S4 Text.

Lastly, in the external validation of the European model in a cohort of Asian, African, and

American patients, XGBoost achieved AUC of 0.89 (95% CI 0.89–0.89) for ICU mortality,

AUC of 0.86 (95% CI 0.86–0.86) for 30-day mortality prediction, and AUC of 0.86 (95% CI

0.86–0.86) in predicting low-risk patients as shown in Fig 7. Furthermore, our results showed

that majority of the models are well calibrated as shown from the reliability curves in S3 Text

as well as Brier scores in S4 Text.

Model interpretation and variable importance ranking

This study evaluated three models over three different population study designs with three dif-

ferent outcomes of interest. However, for the analysis of variable importance and model inter-

pretation, we focus on the best performing model, the XGBoost.

We applied SHAP method over the models’ prediction during each cycle of the 5-fold

cross-validation with the 10-times repetition. Unlike the typical approaches in the literature

that apply SHAP at the final model only, our approach allows us to investigate predictive

impact of each variable much more thoroughly and spot any inconsistencies with the final

results. The Beeswarm plots shown in Fig 8 present the relative importance of the top 10 vari-

ables and their actual relationships with the predicted outcomes, while the calculated average

of absolute SHAP value for each of the ranked variables is available in Fig A in S5 Text.

Vasopressor use and mechanical ventilation within the first 2 days of ICU admission had

the highest impact on ICU mortality prediction, followed by the FiO2 and age, for both inter-

nal and external cohorts. These two variables were also highly important for the prediction of

Fig 6. AUC performance of each model in the European cohort of patients admitted to ICUs after the cut-off date of Dec 1st, 2020

for each of the three outcomes. AUC and AUPRC performance graphs of each model in internal cross-validation are available in Fig B

in S3 Text.

https://doi.org/10.1371/journal.pdig.0000136.g006

Fig 7. AUC performance of the model derived from the overall European cohort and externally validation in a

cohort of Asian, African, and American patients for each of the three outcomes. AUC and AUPRC performance

graphs of each model in internal cross-validation are available in Fig C in S3 Text.

https://doi.org/10.1371/journal.pdig.0000136.g007
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30-day mortality in the European and non-European cohorts, while tracheostomy was highly

predictive for patients’ survival only in the European cohort. In identifying patients at low risk

of mortality, all the 10 highest ranked variables were similar in both the European and the

non-European cohorts, with SOFA and its’ sub-scores emerging as the strongest predictive

factors.

In addition to the importance of the overall variables, we sought to also investigate the val-

ues of individual continuous variables and their association to the predicted risk of outcome.

From these analyses, shown in Fig 9, the predicted risk of ICU mortality gradually increases

with age until around 80 years, beyond which remains high. Predicted 30-day mortality shows

a similar pattern, although the age threshold appears to be slightly higher, at around 85. FiO2

values of up to 40% do not appear to increase the predicted risk of ICU and 30-day mortality,

while PaO2 values of 75 mmHg or lower are associated with a sharp increase in the predicted

risk of ICU and 30-day mortality. Lastly, increase in SOFA scores, gradually augment the pre-

dicted risk of deterioration (as would be expected), however only up to a threshold value of 8,

where beyond these SOFA scores the predicted risk remains consistently high. Very low values

Fig 8. SHAP summary plots showing the top-10 most important variables for each of the three outcomes of interest, when evaluating the European model

internally (left) as well as externally on the non-European cohort (right). Colour represents the actual value of the variables (red indicating higher values), while

the higher the SHAP value of a variable (depicted in the x-axis), the higher the estimated probability of the outcome. For some variables we also indicate the

interval of occurrence, for example “Vasopressors (0–2)” indicates administration of vasopressors during the first 2 days from the admission.

https://doi.org/10.1371/journal.pdig.0000136.g008
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of leucocytes (below 4.5 x 109/μL) and those above 11 x 109/μL appear to increase the predicted

risk of deterioration, however the picture is less clear cut for values beyond this range as there

is a high variability between the patients. Low values of thrombocytes, below 100 x 109/μL

appear to increase the predicted risk of deterioration, but only in a fraction of the patients,

while the predicted risk appears to be decrease above this value.

Furthermore, considering that the starting day of intervention had a significant impact on

the predicted mortality, we sought to investigate the differences between the patients that sur-

vived in the ICU and those that did not, in terms of days when various interventions were

administered during the ICU stay. As can be seen from Fig 10 patients that did not survive had

Renal Replacement Therapy administered more often during the first week of stay (bottom

graph, dark blue) than the patients that survived (top graph, light blue). Furthermore, for

patients that survived, tracheostomy was administered more often in comparison to patients

that did not survive. In terms of the other types of interventions, namely mechanical and non-

invasive ventilation as well as vasopressors, we did not find significant differences in our

dataset.

Fig 9. Dependency plots outlining relationship between the actual values of the variables (x-axis) and risk of predicted outcome (y-axis) expressed in terms of

SHAP values. Higher SHAP values are associated with an increase in the risk of the outcome and vice-versa. For example, increasing age (x-axis in the top left

graph), gradually increases the risk of predicted ICU mortality up to around 80 years. Beyond this value, the risk remains high. These results pertain to the

model derived on the overall European cohort and validated externally on the non-European cohort. Values of FiO2 are expressed in percentages and PaO2 in

mmHg, while leucocytes and thrombocytes are in million per microliter (x 109/μL).

https://doi.org/10.1371/journal.pdig.0000136.g009
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Discussion

This is one of the first studies to demonstrate high performance generalisability (AUC up to 0.86) of

machine learning models in predicting clinically relevant outcomes of older patients from diverse

patient populations with COVID-19, including patients from different European countries, across

different continents and ethnicities, as well as patients admitted in different COVID-19 waves.

While there have been several previous studies that have investigated feasibility of machine

learning for predicting deterioration and mortality of COVID-19 patients [10–13] including

resource allocation [14], none of the studies have evaluated generalisability across highly geo-

graphically diverse patient populations [7].

Furthermore, this level of generalisability performance was achieved using only routinely

collected clinical and demographic variables, suggesting the applicability of our method also in

low-end equipped ICUs and healthcare institutions.

Achieving high generalisability with diverse patient populations is important since avail-

ability of this type of model, especially in countries with limited resources and expertise could

become an important decision-making aid, lending objective support to the complex issue of

resource allocation. These models might prove particularly important in patients, where the

best course of therapeutic action is difficult to judge at the admission due to disease complexity

or lack of prior expertise when facing a novel disease.

Fig 10. Differences between patients that survived in the ICU and those that did not, in terms of frequency of interventions administered in a particular

day during their ICU stay, in the European cohort. Shade of colour represents the frequency of administration for the overall European cohort. The darker

the shade, the more patients were administered a particular intervention on that specific day. White boxes represent no recorded interventions for that day.

https://doi.org/10.1371/journal.pdig.0000136.g010
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To further aid decision making we performed saliency analysis on our model such that cli-

nicians can identify patients at low risk of deterioration, and consequently the care and

resources can be prioritised as early as possible. Our findings are consistent with previous

studies highlighting importance of clinical markers such as age and oxygen saturation. How-

ever, while we find that SOFA is a good predictor of estimating patients at low risk, it becomes

less important in mortality prediction, which our model estimates principally through age,

and FiO2 variables. This finding is in line with the previous work, which found poor discrimi-

nant accuracy of the SOFA score for mortality prediction [6,24].

Our model also captured the association between increased risk of mortality and adminis-

tration of vasopressors and mechanical ventilation within the first 48 hours after the admis-

sion, as shown in Fig 8. In the same line, performing tracheostomy after the first week of

admission increased the risk of 30-day mortality, but not of ICU mortality.

While patients’ age increases the risk of mortality, this appears true only until a threshold of

80 years, after which the risk of ICU mortality remains high. Similarly values of FiO2 up to

40% do not appear to increase the risk of estimated ICU and 30-day mortality, while an

increase in SOFA scores increase the estimated risk of deterioration, but only up to the score

of 8. Beyond this SOFA score the risk remains high, as shown in Fig 9. Finally, very low values

of leucocyte count (below 4 x 109/μL) increase the estimated risk of deterioration and the same

is true for low values of thrombocytes (below 100 x 109/μL), but only in a fraction of the

patients for the latter.

Majority of the previous studies utilised only admission data to predict the risk of a single

event, while typically not considering the subsequent therapeutical interventions, except for

the work in [25] that focused on prediction of favourable outcomes and in [26] that focused on

predicting the need for mechanical ventilation, validating their models within a patient popu-

lation from a single country. One of the advantages of our methodology is that our predictive

model can generate continuous risk prediction scores, taking into consideration also therapeu-

tical interventions, such as vasopressors or mechanical ventilation, in updating risk estimation.

Moreover, we have shown that the continuous risk estimation can be applied to highly diverse

patient populations.

Many design and implementation decisions of our work have been made with a future clin-

ical practice deployment in mind. In this respect, geographical and temporal evaluation of the

model as well as continuous risk prediction would be important steps in understanding perfor-

mance of the model in a clinical practice. Furthermore, our models are not only interpretable

in terms of importance of variables based on SHAP values, but we also provide specific cut-off

points for some of the variables where the risk of outcome increases significantly, building

upon our previous work [24]

These results show that our model derived from a cohort of European patients can be used

to predict outcomes of interest in patients admitted to non-European ICUs, rendering it par-

ticularly relevant for countries where essential resources (such as ventilators) might be scarce,

with varying availability of clinical expertise. From this analysis we believe that our model can

support physicians in estimating prognosis and therapy course. However, this model should

be seen as an additional tool that supports clinical decision making as part of a holistic patient

assessment, while the final decision rests with the judgement of the clinicians, especially con-

sidering ethical issues [27,28].

Limitations

The present study has some methodological limitations in common with the other COVIP-

studies [29–33], such as COVIP does not contain a control group of younger COVID-19
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patients for comparison, or a comparable age cohort of ICU / non-ICU patients. In addition,

the COVIP database does record information on time from symptoms onset to ICU admis-

sion. These treatment limitations might also affect the care of older ICU patients. Furthermore,

COVIP recruited patients in many countries with a wide variety in their care structure, result-

ing in a considerable heterogeneity of treatments.

Conclusions

This study demonstrates that even in the case of very diverse COVID-19 patients from other

countries and continents, machine learning methods can generalise well and produce precise

risk estimates to support clinical decision making. Our models captured both the dynamic

course of the disease by including occurrence and time-to-event information of clinical events

as well as similarities and differences between the diverse cohorts, allowing prediction of dis-

ease severity, identification of low-risk patients and potentially supporting effective planning

of essential intensive care resources.
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S1 Text – Definition of comorbidities 
Diabetes mellitus: documented evidence of diabetes mellitus or reported by the patient or their 
relatives. Prescription of anti-diabetic medication or insulin on the drug chart. 

Ischaemic heart disease: documented abnormal coronary angiography, known coronary artery 
disease, previous percutaneous coronary intervention (PCI) or coronary bypass surgery 

Chronic renal failure: documented evidence of chronic renal insufficiency Grade 3 or higher, 
creatinine clearance <60ml/min or chronic dialysis 

Arterial hypertension: documented evidence of any grade of chronic arterial hypertension or 
prescription of anti-hypertensive medication. 

Pulmonary disease: documented evidence of or medication prescribed for chronic pulmonary disease 
of any aetiology (bronchial asthma, COPD, pulmonary fibrosis), or clinical or radiological signs of 
chronic pulmonary disease 

Chronic heart failure: documented evidence of or medication prescribed for chronic heart failure of 
any aetiology or echocardiographic or radiological signs of chronic heart failure. 

 



S2 Text – Distribution of length of stay and mortality for the European 
and non-European cohorts as well as difference between COVID-19 
waves 
 

  
Fig A Distribution of length of stay (LoS) and mortality rate (in days) for the European cohort, in the left and right panel 
respectively. 

  
Fig B Distribution of length of stay (LoS) and mortality rate (in days) for the non-European cohort, in the left and right panel 
respectively. 



 
Fig C Number of daily confirmed cases per million people, between the first two COVID-19 waves in Europe and France 
(country with the highest number of ICU admissions in our dataset) from January 28th, 2020 (earliest recorded data in the 
source) up to April 27th, 2020 (the end date in our dataset). The first wave peaked around November 7th, 2020, and subsided 
around Dec 1st, 2020, which was our cut-off date between the first two waves, to allow us to evaluate the model derived on 
the patient cohort during the first wave using the patient cohort of the second wave. (Source Our World in Data, John 
Hopkins University). 

 



S3 Text – Performance for Area Under the ROC curve, Precision Recall 
curve as well as model calibration analysis for internal, prospective, 
and external validation cohorts for each of the outcomes of interest 
 

 
Fig A Retrospective AUC (top row) and AUPRC (bottom row) performance of each model in internal cross-validation (top 
panel) and external validation on patients admitted in ICUs in France as the country with the highest number of ICU 
admissions (bottom panel) for each of the three outcomes. 

 



 

 

Fig B Prospective AUC (top row) and AUPRC (bottom row) performance of each model in internal cross-validation (top) of 
the cohort of patients admitted to ICUs from January 11, 2020, until the cut-off date of December 1st, 2020 (top). 
Prospective validation on the cohort of patients admitted to ICUs after the cut-off date until April 27, 2021 (bottom) for 
each of the three outcomes. 



 

Fig C AUC (top row) and AUPRC (bottom row) performance of cross validation of the model derived on the overall European 
cohort (top panel) and its external validation in a cohort of Asian, African and American patients (bottom panel)for each of 
the three outcomes.  

 



 

Fig D Calibration quality of each model in internal cross-validation (top) and external validation on France as the country 
with the highest number of ICU admissions (bottom) for each of the three outcomes. 

 
Fig E Calibration quality of each model in internal cross-validation (top) of the cohort of patients admitted to ICUs from 
January 11, 2020, until the cut-off date of December 1st, 2020 (top). Prospective validation on the cohort of patients 
admitted to ICUs after the cut-off date until April 27, 2021 (bottom) for each of the three outcomes. 



 
Fig F Calibration quality of cross validation of the overall European cohort (top) and external validation of the model in a 
cohort of Asian, African and American patients (bottom) for each of the three outcomes. 

 

 



S4 Text - Detailed performance metrics, including Average Precision, 
Positive and Negative Predictive Value, F-1 score, Mathews 
Correlation Coefficient as well as Brier calibration score, for the 
internal, prospective, and the external validation cohorts for each of 
the outcomes of interest 
 

Retrospective evaluation of European cohort  
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Xgb 0.79 
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 30-day AUC AP PPV NPV F-1 MCC Brier 
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Xgb 0.77 

[0.77-0.78] 

0.76 

[0.75-0.76] 

0.69 

[0.68-0.70] 

0.71 

[0.71-0.72] 

0.67 

[0.67-0.68] 

0.40 

[0.38-0.41] 

0.19 

[0.19-0.20] 

 

Low risk AUC AP PPV NPV F-1 MCC Brier 
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External validation on the French cohort 

ICU AUC AP PPV NPV F-1 MCC Brier 
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30-day AUC AP PPV NPV F-1 MCC Brier 
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Low risk AUC AP PPV NPV F-1 MCC Brier 

LR 0.86 
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0.12 

[0.12-0.12] 

FF 0.85 
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[0.85-0.86] 

0.39 

[0.38-0.39] 

0.31 

[0.31-0.32] 

0.12 

[0.12-0.12] 

Xgb 0.86 

[0.86-0.87] 

0.54 

[0.54-0.55] 

0.57 

[0.56-0.57] 

0.88 

[0.88-0.88] 

0.50 

[0.50-0.51] 

0.41 

[0.40-0.42] 

0.11 

[0.11-0.11] 

 

Prospective evaluation performance of the European cohort in internal cross-
validation 

ICU AUC AP PPV NPV F-1 MCC Brier 
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30-day AUC AP PPV NPV F-1 MCC Brier 

LR 0.75 

[0.75-0.76] 
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[0.64-0.67] 

0.72 
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[0.73-0.75] 
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[0.62-0.64] 
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[0.37-0.41] 

0.19 
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Low risk AUC AP PPV NPV F-1 MCC Brier 

LR 0.84 

[0.83-0.85] 

0.47 

[0.45-0.48] 
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[0.43-0.46] 
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0.35 
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[0.49-0.53] 
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0.92 
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0.48 

[0.46-0.49] 

0.40 

[0.38-0.42] 

0.10 
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Prospective evaluation on the cohort of patients admitted after the cut-off date 
ICU AUC AP PPV NPV F-1 MCC Brier 

LR 0.82 

[0.82-0.82] 

0.81 

[0.81-0.81] 

0.77 

[0.77-0.77] 

0.72 

[0.72-0.72] 

0.75 

[0.75-0.75] 

0.49 

[0.49-0.50] 

0.17 

[0.17-0.17] 

FF 0.82 

[0.82-0.82] 

0.81 

[0.81-0.81] 

0.77 

[0.77-0.77] 

0.72 

[0.71-0.72] 

0.75 

[0.74-0.75] 

0.48 

[0.48-0.49] 

0.18 

[0.18-0.18] 

Xgb 0.83 

[0.83-0.83] 

0.82 

[0.82-0.82] 

0.78 

[0.77-0.78] 

0.73 

[0.72-0.73] 

0.76 

[0.76-0.76] 

0.50 

[0.50-0.50] 

0.17 

[0.17-0.17] 

 

30-day AUC AP PPV NPV F-1 MCC Brier 

LR 0.77 

[0.77-0.77] 

0.80 

[0.80-0.80] 

0.78 

[0.78-0.78] 

0.62 

[0.61-0.62] 

0.69 

[0.69-0.69] 

0.39 

[0.39-0.40] 

0.20 

[0.20-0.21] 

FF 0.77 

[0.77-0.78] 

0.81 

[0.80-0.81] 

0.76 

[0.76-0.76] 

0.65 

[0.65-0.66] 

0.73 

[0.72-0.73] 

0.41 

[0.41-0.42] 

0.20 

[0.19-0.20] 

Xgb 0.77 

[0.77-0.77] 

0.81 

[0.81-0.81] 

0.78 

[0.77-0.78] 

0.62 

[0.62-0.63] 

0.70 

[0.70-0.70] 

0.40 

[0.40-0.41] 

0.20 

[0.20-0.20] 

 

Low risk AUC AP PPV NPV F-1 MCC Brier 

LR 0.84 

[0.84-0.84] 

0.41 

[0.41-0.41] 

0.39 

[0.39-0.40] 

0.92 

[0.92-0.92] 

0.45 

[0.44-0.45] 

0.36 

[0.35-0.36] 

0.13 

[0.13-0.13] 

FF 0.85 

[0.85-0.85] 

0.44 

[0.43-0.44] 

0.47 

[0.46-0.48] 

0.91 

[0.91-0.91] 

0.40 

[0.39-0.42] 

0.34 

[0.33-0.35] 

0.10 

[0.10-0.10] 



Xgb 0.85 

[0.85-0.85] 

0.47 

[0.46-0.47] 

0.40 

[0.39-0.41] 

0.93 

[0.93-0.93] 

0.46 

[0.45-0.46] 

0.37 

[0.36-0.38] 

0.11 

[0.11-0.11] 

 

Internal cross-validation of the overall European cohort 
ICU AUC AP PPV NPV F-1 MCC Brier 

LR 0.78 

[0.77-0.79] 

0.73 

[0.72-0.73] 

0.68 

[0.67-0.69] 

0.74 

[0.73-0.75] 

0.68 

[0.67-0.69] 

0.42 

[0.41-0.43] 

0.19 

[0.19-0.19] 

FF 0.78 

[0.77-0.79] 

0.72 

[0.71-0.73] 

0.65 

[0.64-0.66] 

0.77 

[0.76-0.77] 

0.69 

[0.69-0.70] 

0.42 

[0.40-0.43] 

0.20 

[0.19-0.20] 

Xgb 0.81 

[0.80-0.81] 

0.75 

[0.75-0.76] 

0.68 

[0.67-0.69] 

0.75 

[0.75-0.76] 

0.69 

[0.69-0.69] 

0.43 

[0.42-0.44] 

0.18 

[0.18-0.18] 

 

30-day AUC AP PPV NPV F-1 MCC Brier 

LR 0.76 

[0.76-0.77] 

0.71 

[0.71-0.72] 

0.68 

[0.67-0.69] 

0.71 

[0.70-0.71] 

0.65 

[0.64-0.65] 

0.38 

[0.37-0.39] 

0.20 

[0.20-0.20] 

FF 0.76 

[0.76-0.77] 

0.71 

[0.70-0.72] 

0.66 

[0.65-0.67] 

0.73 

[0.72-0.73] 

0.66 

[0.65-0.67] 

0.38 

[0.37-0.39] 

0.20 

[0.20-0.20] 

Xgb 0.78 

[0.77-0.78] 

0.74 

[0.73-0.74] 

0.68 

[0.67-0.69] 

0.73 

[0.73-0.74] 

0.68 

[0.67-0.68] 

0.41 

[0.40-0.42] 

0.19 

[0.19-0.19] 

 

Low risk AUC AP PPV NPV F-1 MCC Brier 

LR 0.86 

[0.85-0.87] 

0.50 

[0.48-0.53] 

0.49 

[0.46-0.51] 

0.92 

[0.92-0.93] 

0.48 

[0.46-0.50] 

0.40 

[0.38-0.43] 

0.10 

[0.09-0.10] 

FF 0.85 

[0.84-0.87] 

0.51 

[0.48-0.53] 

0.51 

[0.47-0.54] 

0.91 

[0.91-0.92] 

0.45 

[0.43-0.47] 

0.38 

[0.35-0.41] 

0.10 

[0.09-0.10] 

Xgb 0.87 

[0.86-0.88] 

0.52 

[0.49-0.54] 

0.52 

[0.48-0.55] 

0.92 

[0.92-0.93] 

0.49 

[0.47-0.51] 

0.42 

[0.40-0.45] 

0.10 

[0.09-0.10] 

 

External validation of the European cohort on the patients from non-European 
ICUs 

ICU AUC AP PPV NPV F-1 MCC Brier 

LR 0.84 

[0.84-0.84] 

0.84 

[0.84-0.84] 

0.82 

[0.82-0.82] 

0.65 

[0.65-0.65] 

0.70 

[0.69-0.70] 

0.46 

[0.45-0.46] 

0.18 

[0.18-0.18] 

FF 0.84 

[0.84-0.85] 

0.84 

[0.84-0.85] 

0.81 

[0.81-0.82] 

0.71 

[0.70-0.72] 

0.76 

[0.76-0.77] 

0.52 

[0.52-0.53] 

0.17 

[0.17-0.17] 



Xgb 0.89 

[0.89-0.89] 

0.88 

[0.88-0.88] 

0.84 

[0.84-0.85] 

0.71 

[0.71-0.72] 

0.77 

[0.76-0.77] 

0.55 

[0.55-0.56] 

0.15 

[0.15-0.15] 

 

30-day AUC AP PPV NPV F-1 MCC Brier 

LR 0.83 

[0.83-0.83] 

0.85 

[0.85-0.85] 

0.82 

[0.82-0.82] 

0.68 

[0.67-0.68] 

0.74 

[0.73-0.74] 

0.50 

[0.49-0.50] 

0.17 

[0.17-0.18] 

FF 0.83 

[0.83-0.83] 

0.84 

[0.84-0.84] 

0.81 

[0.80-0.81] 

0.72 

[0.71-0.72] 

0.77 

[0.77-0.77] 

0.53 

[0.52-0.53] 

0.17 

[0.17-0.17] 

Xgb 0.86 

[0.86-0.86] 

0.87 

[0.86-0.87] 

0.81 

[0.80-0.81] 

0.74 

[0.74-0.74] 

0.79 

[0.78-0.79] 

0.55 

[0.54-0.55] 

0.16 

[0.15-0.16] 

 

Low risk AUC AP PPV NPV F-1 MCC Brier 

LR 0.85 

[0.85-0.85] 

0.59 

[0.59-0.60] 

0.64 

[0.63-0.64] 

0.80 

[0.80-0.80] 

0.42 

[0.41-0.43] 

0.33 

[0.33-0.34] 

0.15 

[0.15-0.15] 

FF 0.85 

[0.85-0.85] 

0.58 

[0.58-0.58] 

0.64 

[0.63-0.64] 

0.79 

[0.79-0.80] 

0.39 

[0.38-0.40] 

0.31 

[0.31-0.32] 

0.14 

[0.14-0.14] 

Xgb 0.86 

[0.86-0.86] 

0.63 

[0.62-0.63] 

0.68 

[0.67-0.69] 

0.79 

[0.79-0.79] 

0.37 

[0.36-0.39] 

0.32 

[0.31-0.33] 

0.14 

[0.14-0.14] 

 
 



S5 Text – Variable ranking for the European and non-European cohort 
for each of the three outcomes of interest 

 

Fig A Variable ranking based on average SHAP values for each of the three outcomes for the model derived in the overall 
European cohort and validated in the external, non-European cohort. 

 



S6 Text – Evaluation of generalisability of the model derived on the 
European cohort using each of the top-9 European countries (based 
on the number of ICU admissions) as the test cohort. 
 

Table A Model performance in predicting 30-day mortality in the European cohort of patients, evaluated on a single 
European country (shown in the first column based on ISO 3166-1, while England is represented as EN) and derived on the 
remaining European countries. Country and territory abbreviations are detailed in Appendix 9. 

30-day AUC AP PPV NPV F-1 MCC Brier 

FR 0.79 0.68 0.63 0.78 0.66 0.42 0.19 

ES 0.71 0.68 0.66 0.65 0.55 0.29 0.22 

NL 0.74 0.64 0.60 0.73 0.58 0.32 0.20 

DE 0.75 0.66 0.59 0.79 0.65 0.38 0.21 

CH 0.79 0.77 0.70 0.73 0.70 0.42 0.19 

DK 0.74 0.69 0.64 0.69 0.56 0.31 0.20 

BE 0.83 0.78 0.79 0.79 0.67 0.54 0.16 

EN 0.84 0.91 0.94 0.55 0.75 0.52 0.20 

GR 0.80 0.83 0.75 0.67 0.73 0.41 0.18 
 
 
Table B Model performance in predicting ICU mortality in the European cohort of patients, evaluated on a single European 
country (shown in the first column based on ISO 3166-1) and derived on the remaining European countries. Country and 
territory abbreviations are detailed in Appendix 9. 

ICU AUC AP PPV NPV F-1 MCC Brier 

FR 0.82 0.73 0.68 0.80 0.70 0.49 0.17 

ES 0.71 0.69 0.70 0.62 0.61 0.32 0.22 

NL 0.77 0.67 0.62 0.74 0.59 0.35 0.19 

DE 0.83 0.80 0.66 0.80 0.72 0.47 0.17 

CH 0.72 0.57 0.56 0.77 0.62 0.33 0.21 

DK 0.82 0.74 0.67 0.82 0.69 0.49 0.18 

BE 0.91 0.84 0.77 0.85 0.73 0.60 0.13 

EN 0.86 0.89 0.87 0.67 0.77 0.54 0.17 

GR 0.81 0.90 0.84 0.64 0.83 0.49 0.18 
 



Table C Model performance in predicting low-risk patients in the European cohort, evaluated on a single European country 
(shown in the first column based on ISO 3166-1) and derived on the remaining European countries. Country and territory 
abbreviations are detailed in Appendix 9. 

Low risk AUC AP PPV NPV F-1 MCC Brier 

FR 0.86 0.53 0.56 0.86 0.42 0.34 0.11 

ES 0.85 0.38 0.30 0.96 0.32 0.27 0.08 

NL 0.83 0.34 0.30 0.95 0.40 0.33 0.12 

DE 0.91 0.62 0.51 0.95 0.56 0.50 0.10 

CH 0.92 0.56 0.28 0.98 0.40 0.38 0.09 

DK 0.75 0.37 0.39 0.87 0.28 0.20 0.13 

BE 0.80 0.67 0.74 0.66 0.35 0.27 0.18 

EN 0.90 0.68 0.37 0.97 0.49 0.45 0.13 

PT* 0.82 0.57 0.52 0.90 0.58 0.46 0.16 

*Since there were no patients in the Greek (GR) cohort that met the criteria for low-risk patients, we 
considered the next available country, which was Portugal (PT). 

 



S7 Text – Patients’ characteristics, including differences between the 
full set of variables, for the European and non-European cohort with 
respect to the three outcomes of interest (ICU and 30-day mortality 
and prediction of low-risk patients) 
 

Table A Patients’ characteristics for the European and non-European cohort with respect to 30-day mortality 

30-day mortality European Non-European 
Variable Alive Dead p-

value Alive Dead p-
value 

Patients 1568 1290 - 
 

281 335 - 
 

Age 
(year) 

74  
[72,77] 

76  
[73,79] <0.001 75  

[72,80] 
77  

[73,83] <0.001 

Sex (Female) 452  
(28.8) 

375  
(29.1) 0.919 114  

(40.6) 
130  

(38.8) 0.717 

Weight 
(kg) 

81  
[72,91] 

80  
[72,90] 0.041 78  

[69.8,90] 
78  

[70,87] 0.708 
Height 
(cm) 171 [165,178] 170 [164,176] 0.017 165 [159,170] 166 [160,173] 0.142 

BMI 27.7 
[24.8,30.9] 

27.5 
[24.7,30.9] 0.427 27.9 

[25.0,33.2] 
28.3 

[25.6,31.1] 0.722 

SOFA overall score 4 
 [3,7] 

6 
 [4,9] <0.001 4 

 [2,5] 
7 

 [5,10] <0.001 

Presence of diabetes 481 
 (30.8) 

471  
(36.7) 0.001 149  

(53.2) 
194 

 (58.4) 0.225 

Ischemic heart disease 299  
(19.3) 

327  
(25.6) <0.001 77  

(27.6) 
93  

(28.6) 0.852 

Renal comorbidity 175 
 (11.2) 

273 
 (21.3) <0.001 29  

(10.4) 
80  

(24.3) <0.001 

Arterial hypertension 1025 
 (65.6) 

861 
(66.9) 0.483 172  

(61.6) 
235 

 (71.0) 0.019 

Pulmonary disease 337 
 (21.5) 

305  
(23.8) 0.164 45  

(16.1) 
61  

(18.8) 0.457 

Congestive heart 
failure 

178 
 (11.5) 

230 
 (18.1) <0.001 32  

(11.6) 
49  

(14.9) 0.286 

Mechanical ventilation 1057 
 (67.4) 

1064 
 (82.5) <0.001 69  

(24.6) 
271  

(80.9) <0.001 

Vasopressors 997  
(63.6) 

1085  
(84.1) <0.001 37  

(13.2) 
185  

(55.2) <0.001 

Renal replacement 
therapy 

180  
(11.5) 

282 
 (21.9) <0.001 17  

(6.0) 
51  

(15.2) <0.001 

Non-invasive 
ventilation 

401 
 (25.6) 

344 
 (26.7) 0.536 73  

(26.0) 
157 

 (46.9) <0.001 

Tracheostomy 378  
(24.1) 

161  
(12.5) <0.001 17  

(6.0) 
10  

(3.0) 0.098 

ICU LoS 
(day) 

15  
[7,32] 

11  
[6,17] <0.001 6 

 [4,10] 
7 

 [4,10] 0.767 

 

Table B Patients’ characteristics for the European and non-European cohort with respect to identifying low-risk patients 

Low-risk European non-European 

Variable Low risk 
High risk 
(survivors

) 

High risk 
(non-

survivors
)  

p-
value Low risk Alive Dead p-

value 



Patients 371 1203 1284 - 
 

157 127 332 - 
 

Age 
(year) 

75 
[72.5,79] 74 [72,77] 75 [72,79] <0.00

1 
76 

[73,80] 75 [72,80] 77 [73,83] 0.006 

Sex 
(Female) 116 (31.3) 361 (30.0) 350 (27.3) 0.182 65  

(41.4) 
50  

(39.4) 129 (38.9) 0.864 

Weight 
(kg) 80 [70,90] 81 [72,91] 80 [72,90] 0.016 80 

[67,95.5] 77 [70,85] 78 [70,87] 0.424 

Height 
(cm) 

170 
[164,176] 

170 
[165,178] 

170 
[165,177] 0.087 

160 
[154,166

] 

167 
[160,172] 

166 
[160,173] 

<0.00
1 

BMI 
27.1 

[24.2,30.5
] 

27.7 
[25,31] 

27.5 
[24.7,30.8] 0.1 31.2 

[25.6,38] 

27.4 
[24.8,30.5

] 

28.3 
[25.6,31.1

] 
0.003 

SOFA 
overall 
score 

3  
[2,4] 

5  
[3,8] 

6  
[4,9] 

<0.00
1 

3  
[2,4] 

5  
[3,8] 

7  
[5,10] 

<0.00
1 

Presence of 
diabetes 113 (30.6) 377 (31.4) 462 (36.2) 0.02 87 

 (55.4) 
69 

 (54.8) 187 (56.8) 0.908 
Ischemic 

heart 
disease 

90  
(24.3) 228 (19.2) 308 (24.3) 0.005 39  

(24.8) 
39  

(31.2) 
92 

 (28.6) 0.484 

Renal 
comorbidity 

51 
 (13.8) 142 (11.8) 255 (20.0) <0.00

1 
5 

 (3.2) 
24 

 (19.2) 
80 

 (24.5) 
<0.00

1 
Arterial 

hypertensio
n 

248 (67.2) 781 (65.1) 857 (66.9) 0.572 87  
(55.4) 

87  
(69.0) 233 (71.3) 0.002 

Pulmonary 
disease 

83  
(22.4) 258 (21.5) 301 (23.6) 0.442 21 

 (13.4) 
26 

 (20.6) 
59 

 (18.4) 0.238 

Congestive 
heart failure 

54 
 (14.7) 149 (12.5) 205 (16.2) 0.032 14 

 (9.0) 
19  

(15.3) 
48  

(14.8) 0.169 

ICU LoS 
(day) 

5  
[2,7.5] 

16  
[8,31] 

14  
[7,22] 

<0.00
1 

5  
[3,9] 

8  
[4.5,15] 

7  
[4,11] 

<0.00
1 

 



S8 Text – Cohort selection diagram 
 

 

 

 



S9 Text – Abbreviations of the countries and territories 
AT Austria LY Libya 
BE Belgium MA Morocco 
CH Switzerland MX Mexico 
CO Colombia NL Netherlands 
DE Germany NO Norway 
DK Denmark OM Oman 
EG Egypt PS Palestine 
EN England (UK) PK Pakistan 
ES Spain PO Poland 
FR France PS Palestine 
GR Greece PT Portugal 
IE Ireland RO Romania 
IL Israel SA Saudi Arabia 
IN India SD Sudan 
IQ Iraq SY Syrian Arab Republic 
IR Iran TR Turkey 
IT Italy US United States of America 
JO Jordan WL Wales (UK) 
LB Lebanon YE Yemen 

 

 


