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ABSTRACT
Objectives To investigate whether machine learning (ML) 
algorithms can learn racial or ethnic information from the 
vital signs alone.
Methods A retrospective cohort study of critically ill 
patients between 2014 and 2015 from the multicentre 
eICU- CRD critical care database involving 335 intensive 
care units in 208 US hospitals, containing 200 859 
admissions. We extracted 10 763 critical care admissions 
of patients aged 18 and over, alive during the first 24 
hours after admission, with recorded race or ethnicity as 
well as at least two measurements of heart rate, oxygen 
saturation, respiratory rate and blood pressure. Pairs of 
subgroups were matched based on age, gender, admission 
diagnosis and disease severity. XGBoost, Random Forest 
and Logistic Regression algorithms were used to predict 
recorded race or ethnicity based on the values of vital 
signs.
Results Models derived from only four vital signs can 
predict patients’ recorded race or ethnicity with an area 
under the curve (AUC) of 0.74 (±0.030) between White and 
Black patients, AUC of 0.74 (±0.030) between Hispanic 
and Black patients and AUC of 0.67 (±0.072) between 
Hispanic and White patients, even when controlling for 
known factors. There were very small, but statistically 
significant differences between heart rate, oxygen 
saturation and blood pressure, but not respiration rate and 
invasively measured oxygen saturation.
Discussion ML algorithms can extract racial or ethnicity 
information from vital signs alone across diverse patient 
populations, even when controlling for known biases such 
as pulse oximetry variations and comorbidities. The model 
correctly classified the race or ethnicity in two out of three 
patients, indicating that this outcome is not random.
Conclusion Vital signs embed racial information that can 
be learnt by ML algorithms, posing a significant risk to 
equitable clinical decision- making. Mitigating measures 
might be challenging, considering the fundamental role of 
vital signs in clinical decision- making.

INTRODUCTION
Machine learning (ML) algorithms are 
evolving to tackle increasingly complex 
clinical challenges.1 The general appeal is 

that clinical practice will likely benefit from 
algorithm- assisted decision- making by opti-
mising clinical workflows, diagnostic interven-
tions and enhancing personalised precision 
care. Some insights derived from algorithms 
will likely assist in clinical decision- making 
where patients’ lives are at risk. Therefore, 
ML algorithms that become integrated as 
part of decision- making in clinical practice 
must be robust, reliable and unbiased.

Healthcare disparities resulting from 
discrimination and bias are pervasive. These 
can be encoded in algorithms trained on 
clinical data from electronic health records 
(EHRs). Existing inequities can be perpetu-
ated or even magnified by algorithms devel-
oped to inform decision- making due to bias in 
data used for training the models, bias intro-
duced during model development or deploy-
ment and postdeployment monitoring. Any 
of these can result in decision- making that 

WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ Bias in treatment plans, healthcare providers’ atti-
tudes and clinical scores across race or ethnicity is 
well documented. However, far less is known about 
racial or ethnic bias in routinely collected vital signs 
which are essential in clinical decision- making.

WHAT THIS STUDY ADDS
 ⇒ Our study found that algorithms can learn self- 
identified race or ethnicity of patients from the val-
ues of four vital signs alone, even when controlling 
for known factors such as pulse oximetry variations 
and comorbidities.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

 ⇒ We highlight the critical need to raise awareness of 
unexpected sources of bias in clinical decisions and 
to rigorously evaluate ML models to prevent perpet-
uation or amplification of health inequalities.
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can be discriminatory and harmful to socially disadvan-
taged population groups inadequately represented in the 
data.

There is overwhelming evidence that race or ethnicity 
impacts clinical decision- making.2 Hispanic patients seen 
by non- Hispanic providers received breast and colorectal 
cancer screening at higher rates than Hispanic patients 
seen by Hispanic providers.3 Greenwood and colleagues 
reported a 58% reduction in mortality of Black newborns 
when under the care of Black physicians compared with 
White physicians.4 Despite reporting greater pain and 
pain- related disability, minority patients are more likely to 
receive inadequate pain treatment compared with White 
patients.5 6 Treatment variation across race or ethnicity not 
explainable by patient or disease factors has been detailed 
in several studies, accompanied by evidence of uncon-
scious bias in healthcare providers’ attitudes, expecta-
tions and behaviour.7–9 The presence of this type of bias in 
medical practice is further amplified if the discriminatory 
attitudes and behaviours are in turn modelled as disease 
mechanisms or decision support algorithms implemented 
by care providers. Brooks describes this phenomenon in 
an opinion piece that frames unconscious bias as a ‘silent 
curriculum’.10 Furthermore, a recent study illustrates 
racial bias in patients’ EHRs, showing that Black patients 
are 2.5 times more likely to have one or more negative 
descriptors compared with White patients.11

Bias embedded in data has been illustrated by Ober-
meyer et al where ‘at a given risk score, Black patients 
are considerably sicker than White patients, as evidenced 
by signs of uncontrolled illnesses’. The algorithm learnt 
to predict care costs, placing Black patients in the same 
risk category as a subset of White patients, while having 
considerably worse symptoms.12 To add to the severity of 
the problem, the number of Black patients who should 
have been referred for complex care was halved. Racial 
disparities have also been observed in blood pressure 
rates, with Black patients having higher blood pres-
sure.13 14 Moreover, patients with darker skin colour are 
at greatest risk of hypovitaminosis D, which may result in 
microvascular endothelial dysfunction.15

With evidence of racial and ethnic bias in the intuition 
and judgement of healthcare providers, concern exists 
that algorithms trained to predict and optimise outcomes 
may use self- identified racial or ethnic information to 
inform decision- making even when these parameters are 
not used during training.

While bias in clinical scores is well- documented, less is 
known about bias in routinely collected, essential infor-
mation for clinical decision- making, namely, vital signs. 
We investigate whether self- identified race or ethnicity 
can be learnt from four vital signs alone. We will use the 
term ethnicity to refer to self- identified race or ethnicity 
(https://www.ethnicity-facts-figures.service.gov.uk/
style- guide/writing-about-ethnicity/).

Our results show models can predict patients’ ethnicity 
with an area under the curve (AUC) of 0.74 (±0.030) 
between White and Black patients, AUC of 0.74 (±0.030) 

between Hispanic and Black patients and AUC of 0.67 
(±0.072) between Hispanic and White patients. If sensi-
tive attributes are easily learnt from essential clinical data, 
it is of significant concern whether they can become an 
embedded part of clinical decision- making and treatment 
optimisation, leading to patient harm.

Our findings add to the growing body of evidence 
pointing to structural bias in healthcare systems, where 
even seemingly objective physiological data can perpet-
uate inequities. Another important interpretation of 
this finding is that physiological data might present a 
biased substrate for ML models. This dual interpretation 
emphasises the need for caution in using ML for clinical 
decision- making and the potential for physiology data 
to embed racial and ethnic biases, often rooted in how 
measurement devices are designed, tested or used in clin-
ical settings. These biases can carry over into ML models 
trained on this data, further amplifying disparities in 
healthcare outcomes if not carefully addressed.

METHODS
Clinical data sources and study population
We used the eICU Collaborative Research Database 
(eICU- CRD),16 containing 200 859 admissions collected 
from 335 ICUs across 208 hospitals in the USA, admitted 
between 2014 and 2015. The study uses four vital signs: 
heart rate, respiratory rate, non- invasive and invasive 
blood pressure (systolic, diastolic and mean) and oxygen 
saturation. The cohort selection process is detailed in 
online supplemental appendix 1. Including the three 
dominant ethnic groups resulted in a total of 10 763 
patient stays, of which 9215 (85%) were White, 1066 
(10%) were Black and 482 (5%) were Hispanic. Signifi-
cantly less data were available for Asian American and 
Native American patients (177 and 84, respectively), thus 
they were excluded from this study.

Matched cohorts
As our patient cohort consisted predominantly of White 
patients, we devised several matched cohorts based on 
admission diagnosis, gender, age and Acute Physiology 
and Chronic Health Evaluation (APACHE IV) score to 
equally represent the three population subgroups consid-
ered in our study (Black, Hispanic and White patients). 
The process is detailed in online supplemental appendix 
2. The rigorous matching and the fact that only 10% of 
the patients in the original dataset are Black reduced 
the effective sample size markedly. However, relaxing 
matching requirements would have made the research 
less robust.

Statistical analysis
Patient characteristics were analysed using medians 
(IQRs) for continuous and frequencies (percentages) 
for categorical variables. We used the Kruskal- Wallis 
test (one- way ANOVA) for continuous variables and the 
χ2 test for categorical variables to compare different 
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ethnic subgroups. Due to the selection criteria (online 
supplemental appendix 1), no patients with missing data 
remained. Correlations between variables are shown in 
online supplemental appendix 3.

Model development and validation
We analysed binary outcomes, namely whether vital signs 
can predict ethnicity of Black versus White, Hispanic 
versus White and Hispanic versus Black patients. We used 
three ML algorithms to derive the models and evaluate 
performance: Logistic Regression (LR), Random Forest 
(RF) and XGBoost.17 As XGBoost is prone to overfitting, 
we evaluated two versions of XGBoost: with default and 
optimised parameters selected using random search.18 
Details on optimisation are presented in online supple-
mental appendix 4. We also considered a shallow neural 
network, with no performance improvement.

We used stratified fivefold cross- validation to evaluate 
each model, meaning data were divided into fivefolds; 
each fold maintained the original distribution class- wise. 
Model derivation was performed on fourfolds, while 
the remaining fold was used for validation. We repeated 

the process five times and averaged the final results. We 
assessed the performance of our models by computing 
area under the receiver operating characteristic curve 
(AUC), while we are also aware of analyses to measure 
performance in multiple subgroups.19 This study followed 
the Strengthening the Reporting of Observational Studies 
in Epidemiology (STROBE) reporting guidelines.20

RESULTS
Out of 10 763 patients, 1688 met the inclusion criteria 
for the first matched cohort (Black and White), 784 for 
the second cohort (Hispanic and White) and 444 for 
the third cohort (Hispanic and Black). Table 1 shows 
patient baseline characteristics for each matched cohort. 
Initially, we investigated prediction of ethnicity using 
heart rate, oxygen saturation, respiratory rate and blood 
pressure (systolic, diastolic and mean arterial pressure 
measured through arm cuff as well as invasively). Then, 
we performed sensitivity analysis, focusing on patients 
with comorbidities.

Table 1 Patient characteristics for each of the matched cohorts

Clinical values

Black and White matched 
patient cohort

Hispanic and White matched 
patient cohort

Hispanic and Black matched 
patient cohort

Black White Hispanic White Hispanic Black

Patients 844 844 392 392 222 222

Gender (male) 457 (51.7%) 483 (57.23%) 236 (60.2%) 238 (60.7%) 141 (63.5%) 127 (57.21%)

Age 59 (51, 69) (19, 
89)

63 (56, 73)
(18, 89)

61 (53, 73)
(18, 89)

64 (57, 73)
(23, 89)

62 (54, 73)
(18, 89)

60 (52, 70)
(22, 88)

Heart rate 87 (75, 99)
(0, 256)

84 (73, 97)
(0, 242)

84 (73, 97)
(0, 205)

83 (73, 96)
(0, 217)

84 (74, 96)
(0, 189)

86 (76, 98) (0, 
300)

Invasive oxygen 
saturation

97.6 (95, 99)
(17, 100)

97.4 (95, 99)
(12, 100)

97 (95, 99)
(43, 100)

97 (95, 99)
(28, 100)

97 (95, 99)
(54, 100)

97 (95, 99)
(27, 100)

Oxygen saturation 
(pulse oximetry)

99 (97, 100)
(0, 100)

98 (95, 99)
(2, 100)

98 (96, 100)
(15, 100)

97 (95, 99)
(15, 100)

98 (96, 100)
(35, 100)

99 (96, 100)
(0, 100)

Respiration rate 19 (15, 24)
(0, 197)

19 (16, 23)
(16, 189)

19 (16, 23)
(0, 140)

19 (15, 23)
(0, 147)

19 (16, 23)
(0, 140)

19 (15, 24)
(0, 152)

Invasive systolic BP 123 (107, 141)
(0, 300)

120 (106, 138)
(0, 300)

122 (108, 138)
(0, 300)

123 (108, 140)
(0, 300)

119 (106, 135)
(0, 300)

122 (108, 140)
(0, 300)

Invasive diastolic BP 61 (53, 70)
(0, 300)

58 (50, 66)
(0, 300)

59 (51, 68)
(0, 300)

59 (51, 68)
(0, 300)

58 (51, 67)
(0, 300)

60 (53, 68)
(0, 300)

Invasive mean BP 80 (72, 91)
(0, 300)

78 (69, 87)
(0, 300)

79 (70, 90)
(0, 300)

79 (70, 90)
(0, 300)

78 (69, 88)
(0, 300)

80 (72, 89)
(0, 300)

Systolic BP 121 (105, 139)
(20, 287)

118 (103, 135)
(21, 287)

120 (106, 135)
(23, 270)

119 (105, 136)
(28, 257)

117 (104, 133) 
(23, 270)

123 (106, 141)
(24, 286)

Diastolic BP 66 (57, 76)
(3, 224)

63 (55, 73)
(0, 234)

64 (55, 74)
(10, 233)

63 (55, 73)
(0, 219)

62 (54, 72)
(10, 181)

65 (56, 75)
(10, 210)

MAP 82 (72, 94)
(9, 229)

79 (69, 91)
(14, 269)

78 (69, 89)
(16, 238)

80 (70, 91)
(18, 224)

76 (68, 87)
(18, 188)

82 (72, 94)
(16, 220)

We show the gender distribution for each self- identified race or ethnicity, accompanied by the percentage of male patients. The remaining 
characteristics are described by the mean and the first and the third quartiles in the brackets. The second row shows the minimum and the 
maximum values of the variables. The p values for the variables (where applicable) are shown in online supplemental appendix 5.
BP, blood pressure; MAP, mean arterial pressure.
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Vital signs as a source of bias
We investigated the presence of bias in the overall patient 
cohort and used this as baseline. Our analysis reveals 
XGBoost can predict Black and White patients’ ethnicity 
using only vital signs with a performance of AUC of 0.74 
(±0.030) as seen in figure 1 and table 2. Previous work 
has shown that confounding variables, such as gender 
and age, can significantly impact the prediction of race or 
ethnicity.21 Therefore, to investigate the effect of poten-
tially confounding variables, we derived a cohort of 1064 

patients matched on age using exact matching, rather 
than the ±5 years range originally used. This resulted in 
a comparable AUC of 0.78 (±0.019), indicating that even 
in cohorts with no statistical difference in age and gender, 
the algorithms can still distinguish patients’ ethnicity.

Furthermore, similar performance in predicting 
patients’ ethnicity also holds when considering patients 
with comorbidities, as shown in table 3. Only patients with 
heart failure had significant result deviation.

Considering these results, we then probed possible 
origins of racial information in vital signs through vari-
able saliency analysis. We used the Shapley Additive exPla-
nations (SHAP) method to understand the influence 
of each vital sign in predicting patients’ ethnicity. The 
SHAP analysis (figure 2) revealed that oxygen saturation 
measured through pulse oximetry was the most influen-
tial variable in predicting patients’ ethnicity. Therefore, 
we focused on investigating not only pulse oximetry, but 
also technological approaches used to measure vital signs 
in general as potential sources of racial information.

Technologies used to measure vital signs as a potential 
source of racial information
We investigated whether devices used to measure vital 
signs can be a source of ethnic bias since earlier work has 
shown that skin colour differences can influence pulse 
oximetry readings.22 Furthermore, acquiring accurate 
readings of blood pressure using an arm cuff is chal-
lenging in patients with high BMI.23 To see whether ML 

Figure 1 Performance of ML models in predicting patients’ self- identified race or ethnicity using vital signs only as input for 
Black and White patients. Analysis is based on Logistic Regression, Random Forest, XGBoost with default parameters and 
XGBoost with optimised parameters found using random search. AUC, area under the curve; ML, machine learning; ROC curve, 
receiver operating characteristic curve.

Table 2 Self- identified race or ethnicity prediction 
performance for all matched cohorts using Logistic 
Regression, Random Forest, XGBoost and XGBoost with 
optimised (opt) hyperparameters

Black and 
White 
patients
(n=844 per 
group)

Hispanic 
and White 
patients
(n=392 per 
group)

Hispanic 
and Black 
patients
(n=222 per 
group)

Logistic 
Regression

0.61±0.030 0.61±0.048 0.70±0.057

Random Forest 0.71±0.024 0.69±0.069 0.75±0.084

XGBoost 0.72±0.026 0.68±0.080 0.78±0.084

XGBoost (opt) 0.74±0.030 0.67±0.072 0.74±0.030

Results are shown using area under the receiver operating 
characteristic curve along with SD.
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algorithms could pick up these known differences, we 
divided the analysis into investigating potential racial 
information in (1) blood pressure measurements using 
an arm cuff and (2) oxygen saturation measurements 
using pulse oximetry.

Racial information in blood pressure values measured using an 
arm cuff
We compared the performance of ethnicity prediction 
using blood pressure values measured through an arm 
cuff (non- invasive) with that of an arterial line (inva-
sive), in addition to using both types of measurements. 

For these tests, we consider heart and respiration rates, as 
well as invasive and non- invasive blood pressure measure-
ments. Oxygen saturation features were disregarded.

In contrast to existing literature, our results showed that 
while there is a presence of racial information in blood 
pressure measurements irrespective of the measure-
ment method used (AUC of 0.63±0.035), we did not find 
major differences between values measured using an arm 
cuff (AUC of 0.64±0.036) in comparison to the values 
measured through an arterial line (AUC of 0.63±0.025). 
Results are summarised in table 4.

Table 3 Self- identified race or ethnicity prediction performance for the Black and White cohort in patients with comorbidities 
using Logistic Regression, Random Forest, XGBoost and XGBoost with optimised (opt) hyperparameters

Sepsis Essential hypertension Heart failure Acute kidney failure Chronic kidney disease

Logistic Regression 0.57±0.176 0.62±0.073 0.53±0.113 0.60±0.049 0.57±0.099

Random Forest 0.69±0.099 0.62±0.083 0.57±0.059 0.69±0.075 0.69±0.095

XGBoost 0.69±0.093 0.60±0.064 0.51±0.050 0.71±0.068 0.72±0.079

XGBoost (opt) 0.71±0.077 0.60±0.091 0.50±0.063 0.69±0.081 0.67±0.064

Results are shown using area under the receiver operating characteristic curve along with SD.

Figure 2 Importance of variables in predicting patients’ self- identified race or ethnicity using all the four vital signs in Black 
and White patients. Variables are shown in order of importance from the top, with pulse oximetry being the most influential in 
predicting patients’ race or ethnicity. The variable name suffix indicates whether mean (_mean), minimum (_min), maximum 
(_max) or variance (_var) value was used for a particular vital sign. The frequencies of measurement were considered in the 
entire 24 hours (_total), during each of the first 6 hours, after admission (hour_[1–6]). The maximum measurements taken during 
a period of 1 hour are labelled as maximum_in_24_hours. The red colour indicates higher values of a variable, whereas blue 
indicates a lower value. SHAP, Shapley Additive exPlanations.
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Racial information in oxygen saturation values measured using 
pulse oximetry
We also investigated the presence of racial information 
in oxygen saturation stemming from measurement tech-
nologies by comparing the performance of ethnicity 
prediction using oxygen saturation values obtained from 
pulse oximetry (non- invasive) with those obtained from 
an arterial line (invasive). For these tests, we considered 
heart and respiration rates and invasive and non- invasive 
oxygen saturation measurements. Blood pressure features 
were disregarded.

Our findings showed that pulse oximetry is a source of 
racial information with an AUC of 0.72 (±0.028). This is 
in severe contrast with results obtained from invasively 
measured oxygen saturation (arterial line), where these 
values predict patients’ ethnicity with an AUC of 0.60 
(±0.023), as shown in table 4. Our results support previous 
findings that pulse oximetry is affected by skin colour.22

Racial information in care delivery practices reflected in vital 
signs
Additionally, we focused on care delivery practices as 
reflected in the frequency of measurements of vital signs, 
rather than actual values. We find care delivery practices 
do not significantly influence the prediction of patients’ 
ethnicity with an AUC of 0.57 (±0.019), as shown in 
table 4. This may also be because vital signs are measured 
far more routinely than other variables, and conse-
quently, if bias indeed exists, it would be difficult for the 
algorithms to ascertain.

Other sources of racial information reflected in patients’ vital 
signs
Finally, we investigated whether ethnicity information 
can be learnt when controlling for measurement tech-
nologies and care delivery practices. For this analysis, we 
used values of invasively measured vital signs only. This is 
because invasively measured vital signs are less prone to 
being influenced by measurement technology. Even when 
controlling for these factors, we show that ethnicity can 
be learnt from vital signs with an AUC of 0.64 (±0.034), 
detailed in table 4.

It is difficult to pinpoint potential sources of ethnicity. 
One hypothesis could be calibration differences in 
APACHE IV scores as shown in Sarkar et al,24 or differ-
ences in disease severity not being reflected in APACHE 
IV scores.12 However, upstream factors, such as patient 
selection criteria for an arterial line or even availability 
of patients might have also contributed to ethnicity being 
embedded in vital signs.25

DISCUSSION
We have shown that ML algorithms can learn self- 
identified racial information from vital signs alone. This 
is unexpected as racial information was not thought to be 
present within vital sign values. Furthermore, the ability 
of ML algorithms to learn ethnicity from vital signs gener-
alised to diverse patient populations and held even when 
controlling for known sources of racial or ethnic bias, such 
as pulse oximetry readings affected by skin colour, care 
delivery practices, which were not found to contribute to 
racial information, and presence of comorbidities.

While a definite prediction of ethnicity cannot be 
obtained, the model’s success in correctly classifying two 
out of three patients is not accidental. Our models use 
information from patients’ vital signs only, suggesting 
that statistical features from routinely collected informa-
tion in the first 24 hours of admission contain embedded 
information along racial dimensions. Pulse oximeter 
readings, considered an important unbiased measure of 
hypoxaemia, were shown to be influenced by skin colour, 
which came to light during the COVID- 19 crisis.22 26 27 On 
further investigation, it was revealed that oxygen satura-
tion levels had greater variability in patients who iden-
tified as Black, followed by Hispanic, Asian American 
and least in White patients. This showcases an important 
source of bias stemming from neglect, that is, the lack of 
rigour in technology development, even in sensitive areas 
such as healthcare. While our saliency analysis showed 
pulse oximetry as an important variable, its correla-
tion with ethnicity does not fully explain our findings. 
These results show this bias propagates even after data 

Table 4 Self- identified race or ethnicity prediction performance results for different potential sources of bias using Logistic 
Regression, Random Forest, XGBoost and XGBoost with optimised (opt) hyperparameters

Non- invasive 
blood pressure

Invasive 
blood 
pressure

Non- invasive 
and invasive 
blood 
pressure

Non- invasive 
oxygen 
saturation

Invasive 
oxygen 
saturation

Non- invasive 
and invasive 
oxygen 
saturation

Frequency of 
measurements 
of vital signs

Other 
sources of 
bias

Logistic 
Regression

0.61±0.032 0.58±0.027 0.59±0.024 0.73±0.033 0.59±0.032 0.72±0.032 0.55±0.043 0.62±0.044

Random 
Forest

0.62±0.030 0.62±0.038 0.61±0.025 0.70±0.030 0.59±0.021 0.69±0.025 0.56±0.028 0.62±0.035

XGBoost 0.59±0.030 0.57±0.016 0.59±0.027 0.67±0.027 0.58±0.021 0.68±0.027 0.55±0.030 0.59±0.029

XGBoost 
(opt)

0.64±0.036 0.63±0.025 0.63±0.035 0.72±0.028 0.60±0.023 0.72±0.030 0.57±0.019 0.64±0.034

Results are shown using area under the receiver operating characteristic curve along with SD.
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aggregation, thus further emphasising the need for tech-
nological improvement.

In addition to the potential risks, our study also high-
lights challenges in mitigation measures. A common 
approach, although not without critics,28 is to selectively 
remove variables that encode sensitive attributes, so 
ML models do not learn from them and consequently 
sensitive information does not become part of the deci-
sion process. Ubiquitous use of vital signs in clinical 
decision- making renders this approach impossible, not 
least because the origin of racial information appears 
to be difficult to isolate. Perhaps the time has come to 
apply a counter approach, by using sensitive attributes 
such as race or ethnicity to facilitate audit for possible 
algorithmic bias and adapt established policies on how 
to ethically collect, use and report data on race or 
ethnicity.29 Moreover, one of the biggest challenges of 
the study stemmed from limited or missing information 
in the dataset. Therefore, our selection process illustrates 
the need for larger and more encompassing datasets, 
which contain relevant variables such as race or ethnicity, 
gender and age detailed with diversity necessary to make 
them all- inclusive.

Limitations
While our study includes a well- studied, large and diverse 
patient population, allowing investigation of bias for 
several racial groups, some limitations exist. Use of self- 
identified race presents a challenge, as studies have 
shown that genetic variability is higher within the races 
than between the races,30 rendering race more a social 
construct rather than a biological one. Following on, race 
or ethnicity in this study included rigid categories that 
did not account for patients of mixed ancestry as well as 
limited availability of data from other racial identity cate-
gories. We included Black, Hispanic and White patients 
only. Other racial, ethnic identities (namely Asian Amer-
ican and Native American patients) had insufficient data 
for a robust analysis. Furthermore, because of the rigorous 
cohort matching and that only 10% of the patients in 
the original dataset are Black, the effective sample size is 
markedly reduced. However, relaxing the requirements 
for matching would have made our investigation less 
robust, while observational studies, such as ours, allow 
us to further refine the hypothesis for follow- up studies. 
Finally, our study focused on the US- based patient popu-
lation; therefore, further investigation would be required 
to determine whether these results are generalisable to 
centres outside of US- based ICUs.

These limitations highlight the need for more inclusive 
and representative datasets in future research. This could 
be achieved through targeted data collection in collabo-
ration with national registries or institutions working with 
under- represented populations as a means of ensuring 
broader demographic coverage—including individuals of 
mixed ancestry and racial groups beyond Black, Hispanic 
and White populations.

CONCLUSION
As ML weaves itself into the fabric of healthcare, there is 
increasing attention on the effect of algorithms on under- 
represented, marginalised or disadvantaged populations. 
Algorithms used to identify patients with complex health 
needs were found to perpetuate racial disparities, leading 
to a call for greater algorithmic transparency by the US 
Senate. Our work, while in the same vein, goes beyond 
this call by additionally drawing attention to unexpected 
sources of bias and the potential harm, given their ubiq-
uitous use in clinical decision- making.
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