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ABSTRACT 

Background: racial bias has been shown to be present in clinical data, affecting patients unfairly based on their race, 

ethnicity and socio-economic status. This problem has the potential to be significantly exacerbated in the light of 

Artificial Intelligence-aided clinical decision making. We sought to investigate whether bias can be introduced from 

sources that are considered neutral with respect to ethnicity and race and consequently routinely used in modelling, 

specifically vital signs. 

Methods: to perform our analysis, we extracted vital signs from 49,610 admissions from a cohort of adult patients 

during the first 24 hours after the admission to the Intensive Care Units (ICU), derived from multi-centre eICU-CRD 

database and single-centre MIMIC-III database, spanning over 208 hospitals and 335 ICUs. Using heart rate, SaO2, 

respiratory rate, systolic, diastolic, and mean blood pressure, we develop machine learning models based on Logistic 

Regression and eXtreme Gradient Boosting and investigate their performance in predicting patients’ self-reported 

race. To balance the dataset between the three ethno-races considered in our study, we use a matching cohort based 

on age, gender, and admission diagnosis. 

Findings: standard machine learning models, derived solely on six vital signs can be used to predict patients’ self-

reported race with AUC of 75%. Our findings hold under diverse patient populations, derived from multiple hospitals 

and intensive care units. We also show that oxygen saturation is a highly predictive variable, even when measured 

through methods other than pulse oximetry, namely arterial blood gas analysis, suggesting that addressing bias in 

routinely collected clinical variables will be challenging. 

Interpretation: our finding that machine learning models can predict self-reported race using solely vital signs creates 

a significant risk in clinical decision making, further exacerbating racial inequalities, with highly challenging 

mitigation measures. 

Funding: The funders had no role in the design of this study. 
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1 INTRODUCTION 

Machine learning (ML) algorithms are being increasingly used to tackle particularly complex clinical challenges 

[1],[2],[3]. Looking ahead, clinical practice will benefit from game-changing approaches that can assist healthcare 

processes via (semi-) autonomous decision making and/or recommendations of care actions. Some of these algorithms 

may possibly focus on decisions where patients’ lives are at risk. Therefore, the ML algorithms that become part of 

clinical practice must be robust, reliable, and unbiased.  

Bias can be introduced from the data or stem from the approach used in the model development pipeline, and in both 

cases, it can result in decision making that can be discriminatory and harmful to minority groups. Importantly, the bias 

stemming from data is especially critical since it propagates and even amplifies inequalities in under-represented 

groups.  

The unequal treatment of patients based on their race has been reported in detailed studies, accompanied by 

indisputable evidence of bias in healthcare providers’ attitudes, expectations, and behaviour [4],[5],[6]. The problem 

with the presence of bias in medical practice is further amplified if considered that the bias might be taught to students, 

as is heavily implied in an opinion piece in [7] defining the process as a “silent curriculum”, stating “among two 

patients in pain waiting in an emergency department examination room, the white one is more likely to get medications 

and the black one is more likely to be discharged with a note documenting “narcotic-seeking behavior”. A recent study 

[8] illustrates racial bias in the descriptions of patients’ electronic health records (EHR), showing that black patients 

are 2.5 times more likely to have one or more negative descriptors in their EHR compared with white patients.  

Biased medical decisions may also result from clinical trials that produce biased datasets, either obtained entirely from 

a single ethno-racial group or with a dominant representation of one ethno-race over others [9]. The study in [10] 

shows that, even though ethno-race influences response to cancer treatments and outcomes, no ethno-racial statuses 

are recorded in the majority of patients, and in cases of recorded ethno-race the highest represented ethno-race in 

melanoma, breast and lung cancer trials are white people (25.94%), followed by Asians (4.97%), and African 

Americans (1.08%); resulting in biased datasets with underrepresentation of particular ethnicities [11].  

Working with biased datasets negatively influences the development of ML assisted applications. There have been 

reports of detected ethno-racial bias in medical ML applications. The study in [12] shows patients being assigned a 

risk score depending on their skin colour. In particular, Black patients which were placed in the same risk category as 

a subset of White patients, health-wise, had considerably worse symptoms. To add to the severity of the problem, the 

ML algorithm reduced the number of Black patients who should have been referred for complex care by more than 

half. Another example is an algorithm for the diagnosis of diabetic retinopathy showing poor performance in 

populations living outside of the location where it was developed [13]. 

Analysis of ethno-racial bias in ML applications can also be performed by observing the models' performances across 

race-ethnicities [14]. In [15] the authors present their investigation into the performance of three severity scoring 

systems in four ethnicities, focusing on hospital mortality. The authors conclude that severity scores have a statistical 

bias since the overestimated mortalities are most notable with Hispanic and Black patients. 

Considering these issues, we sought to investigate an unlikely contributor of bias in artificial intelligence (AI) 

algorithms, namely the vital signs. The development of ML models typically includes the data pre-processing phase 

where variables that could potentially introduce bias in the models, such as race-ethnicity are excluded. The objective 

is to prevent the algorithm from using attributes that should not be used for classification, prediction or optimisation. 

For example, an algorithm that sifts through curriculum vitae should not be using the gender or the race-ethnicity as 

input so these are routinely excluded as input when the algorithms are trained. Vital signs, such as blood pressure, 

heart rate, and oxygen saturation, are objective measures and considered neutral with respect to demographics, 

ethnicity and race and as such considered safe, unbiased candidate features, for modelling. We investigate whether 

seemingly bias-free data can contain information about sensitive attributes such as race-ethnicity that can be learned 

during training, specifically focusing on vital signs. 
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To perform our analysis, we rely on the eICU Collaborative Research Database [16] where we extract the vital signs 

from 31,849 admissions of adult patients and the MIMIC-III [17] dataset where we extract the vital signs of a cohort 

of 17,761 admissions of adult patients, considered in the first 24 hours after the admission. Since both cohorts are 

made up of predominantly Caucasian patients, we used a matching cohort based on age, gender, and admission 

diagnosis to balance the dataset between the three ethno-races considered in our study, namely Caucasian, African 

American and Hispanic. Classical ML algorithms (Logistic Regression and XGBoost) are then used to investigate 

whether the patients’ ethno-race can be predicted based solely on their vital signs. We also perform variable saliency 

analysis, to identify the extent to which specific vital signs contribute most towards the prediction of the ethno-race.  

The rest of the paper is organised as follows. Section II describes the dataset, the data preparation process and the 

methodology used. Section III presents our results, whereas in section IV we discuss them. Section V concludes this 

paper and discusses our potential future work in this area. 

2 METHODS 

2.1 CLINICAL DATA SOURCES AND STUDY POPULATION 
The eICU Collaborative Research Database (eICU-CRD), used in our study, contains data associated with 200,859 

admissions collected from 335 ICUs across 208 hospitals in the US admitted between 2014 and 2015 [16]. We 

additionally used the MIMIC-III [17] database, which comprises data of over 40,000 patients admitted in critical care 

units between 2001 and 2012. From both datasets, we selected all adult patients (age 18 and over) that were alive 

within the first 24 hours after ICU admission that had at least one clinically valid measurement (see Appendix 2, Table 

I) for all the six vital signs considered for this study: heart rate, SaO2, respiratory rate, systolic, diastolic and mean 

blood pressure. We additionally extracted several statistical features including mean, minimum, maximum and 

variance. Patients that were missing admission diagnosis, age, or gender were excluded from the study. 

For the eICU dataset, we used the three most dominant ethno-races: Caucasian, African American, and Hispanic. This 

resulted in a total of 31,849 patients, of which 27,335 were (85%) Caucasian, 3351 (11%) were African American, 

and 1163 were (4%) Hispanic patients. The data for the other two, Asian and Native American, was significantly 

lower, with 621 and 247 patients respectively, so these ethno-races weren’t used in this research. For the MIMIC-III 

dataset, we repeated the same selection, which resulted in 17,761 patients total, of which 15,899 (89.5%) were 

Caucasian, 1365 (7.7%) were African American, and 497 (2.8%) were Hispanic patients. 

2.2 STATISTICAL ANALYSIS 
The baseline characteristics of the patients were analysed using medians (IQRs) for continuous variables and 

frequencies (percentages) for categorical variables. We used the Kruskal–Wallis test (one-way ANOVA) for 

continuous variables and the chi-square test for categorical variables to compare ethno-racial subgroups. 

2.3 MODEL DEVELOPMENT AND VALIDATION 
For each of the datasets, we analysed binary comparative tests, i.e., African Americans and Caucasians, Hispanics and 

Caucasians, Hispanics and African Americans. Additionally, to address the issue of data imbalance between ethno-

races we created three matched cohorts by devising a matching process with the minority ethno-race based on three 

primary features: admission diagnosis (first cohort), gender (second cohort), and age (third match) (see Appendix 1). 

The matching process resulted in a total of 9 sets of data, for each dataset. We evaluate the performance using the 

Logistic Regression (LR) - a model which uses a logistic function in order to model a binary output variable given 

input variables. The classification is performed based on a decision threshold, which is why LR is useful when the 

outcome variable is binary, but the input variables are continuous; and XGBoost - uses gradient boosted trees, and is 

an ensemble of models that learn by correcting the errors made by existing models until no further improvements can 

be made. XGBoost can be prone to overfitting because when the weaker models are trained, the resulting model has 
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high complexity, and therefore, we trained two versions of the XGBoost algorithm: a default version (with the default 

parameters), and an optimised version (with the parameters selected with random search). 

The algorithms were internally evaluated using stratified 5-fold cross-validation, meaning the data was divided into 5 

folds in a way each fold maintains the original distribution class-wise. The training of the model was performed on 4 

folds, whereas the remaining fold was used to validate the model’s performance. This process was repeated 5 times, 

for each of the folds, and the final results were averaged over all folds. 

The performance of our models was assessed by computing the area under the receiver operator characteristic curve 

(AUC-ROC) and the area under the precision-recall curve (AU-PRC). The AUC-ROC shows how well the model is 

capable of distinguishing between the classes and is plotted with the true positive rate (recall) on the y-axis and the 

false positive rate (FPR) on the x-axis. The recall represents the model’s ability to correctly classify positive samples 

as positive. The FPR shows the samples incorrectly classified by the model as positives out of all negative samples. 

The AU-PRC shows the trade-off between precision and recall. The precision represents the model’s ability not to 

classify a negative sample as positive. 

3 RESULTS  

The results for all matched cohorts for both datasets showed similar performance for all models across all comparative 

tests, with the second matched cohort that provided the best results. Therefore, the results presented in this section are 

from the second matched cohort. The patient baseline characteristics in each of the three comparative tests for the 

second matched cohort are summarised in Table I. The baseline characteristics for the first and third matched cohort 

are provided in Appendix 1). 

Table I Cohort characteristics table for each comparative test in the second matched cohort (eICU-CRD and 

MIMIC-III datasets). Continuous variables are represented as medians with interquartile ranges 

 African American and Caucasian Hispanic and Caucasian Hispanic and African American 

Variables African 

American 

Caucasian p-value Hispanic Caucasian p-value Hispanic African 

American 

p-value 

eICU-CRD 

Patients  3346 3346 - 1161 1161 - 1163 1163 - 

Gender 

(male) 

1801 

(53.83%) 

1801 

(53.83%) 

- 674 (58.05%) 674 (58.05%)  - 676 (58.13%) 676 (58.13%) - 

Age 58 [48, 67] 61 [52, 71] < 0.001 62 [51, 73] 63 [53, 74] 0.022 62 [51, 73] 60 [50, 69] 0.011 

Heart rate 87 [75, 100] 84 [73, 97]  0.007 84 [73, 97] 84 [74, 96] 0.811 84 [73, 97] 86 [75, 99] 0.019 

Oxygen 

Saturation 

99 [97, 100] 98 [96, 99] <0.001 98 [96, 100] 98 [96, 99] 0.005 98 [96, 100] 99 [97, 100] 0.002 

Respiration 

rate 

18 [15, 23] 19 [15, 23] 0.729 19 [15, 23] 19 [15, 23] 0.438 19 [15, 23] 19 [15, 23] 0.610 

Systolic 

blood 

pressure 

126 [109, 

146] 

121 [106, 

139] 

<0.001 124 [109, 

140] 

122 [106, 

139] 

0.018 124 [109, 

140] 

124 [108, 

143] 

0.852 

Diastolic 

blood 

pressure 

62 [53, 71] 59 [51, 68] 0.506 59 [50, 68] 58 [51, 67] 0.133 59 [50, 68] 61 [53, 71] < 0.001 

Mean blood 

pressure 

82 [72, 93] 79 [70, 90] 0.005 80 [70, 90] 79 [70, 90] 0.635 80 [70, 90] 81 [72, 92] 0.012 

MIMIC-III 

Patients  1333 1333 - 485 485 - 496 496 - 

Gender 

(male) 

606  

(45.46%) 

606 

(45.46%) 

- 301 

(62.06%) 

301 

(62.06%) 

- 312  

(62.9%) 

312 

(62.9%)  

- 

Age 61 [51, 72] 63 [52, 73] 0.349 55 [43, 68] 56 [46, 69] 0.148 54 [43, 67] 57 [46, 68] 0.041 

Heart rate 87 [75, 100] 85 [74, 96] 0.001 89 [78, 103] 86 [75, 97] 0.016 89 [78, 103] 87 [75, 99] 0.973 

Oxygen 

Saturation 

99 [97, 100] 99 [96, 100] 0.01 99 [97, 100] 99 [97, 100] 0.697 99 [97, 100] 99 [97, 100] 0.237 

Respiration 18 [14, 22] 18 [14, 21] 0.52 17 [14, 21] 18 [14, 22] 0.853 17 [14, 21] 18 [14, 22] 0.044 
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rate 

Systolic 

blood 

pressure 

119 [103, 

138] 

114 [101, 

130] 

< 0.001 117 [104, 

134] 

113 [100, 

129] 

0.003 117 [104, 

134] 

121 [105, 

139] 

0.013 

Diastolic 

blood 

pressure 

61 [54, 70] 57 [50, 65] < 0.001 62 [54, 71] 58 [51, 67] 0.001 62 [54, 71] 63 [54, 72] 0.314 

Mean blood 

pressure 

80 [70, 92] 76 [68, 86] < 0.001 80 [71, 91] 76 [67, 86] < 0.001 80 [71, 91] 81 [71, 93] 0.982 

3.1 EICU-CRD RESULTS 
Table II summarises the eICU-CRD results from the AUC-ROC and AU-PRC for all comparative tests performed 

with the second matched cohort and each of the three algorithms: LR, XGBoost (with default parameters), and 

optimised XGBoost (with optimised parameters). The comparative test between Hispanic and Caucasian patients 

shows the lowest results across all algorithms. On the other hand, the best results were obtained in the comparative 

test between African American and Caucasian patients, with the highest AUC performance at 0.75 ± 0.019. The results 

additionally show that XGBoost performed better than LR across all tests. The optimised XGBoost performed better 

than the default XGBoost, due to the simplification of the ensemble models used, which removed the model’s 

overfitting.  

Table II AUC and AP across all comparative tests for the second matched cohort and each of the three 

algorithms used (eICU-CRD). The values are represented with mean and standard deviation. 

 African American and Caucasian Hispanic and Caucasian  Hispanic and African American 

Model AUC AP AUC AP AUC AP 

LR 0.64 ± 0.016 0.62 ± 0.059 0.63 ± 0.056 0.58 ± 0.042 0.70 ± 0.051 0.62 ± 0.064 

XGBoost Default 0.71 ± 0.023 0.66 ± 0.071 0.64 ± 0.04 0.60 ± 0.062 0.69 ± 0.041 0.61 ± 0.053 

XGBoost Optimised 0.75 ± 0.019 0.70 ± 0.089 0.67 ± 0.047 0.63 ± 0.065 0.72 ± 0.045 0.65 ± 0.081 

 

The AUC-ROC and AU-PRC are displayed in Table III. Between the three comparative tests, the graphs show the 

best results in the comparison between African Americans and Caucasians. Additionally, the AUC-ROC clearly 

displays the difference between the performance of the three algorithms, illustrating that the optimised XGBoost 

provides the best ethno-race prediction. The AUC-ROC and AU-PRC for the first and third matched cohorts are 

provided in Appendix 3 and 4. 

Table III AUC-ROC and AU-PRC for the second matched cohort across all comparative tests (eICU-CRD) 

African American and Caucasian Hispanic and Caucasian Hispanic and African American 
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3.2 MIMIC-III RESULTS 
Table IV summarises the MIMIC-III results from the AUC-ROC and AU-PRC for all comparative tests performed 

with the second matched cohort and each of the three algorithms: LR, XGBoost (with default parameters), and 

optimised XGBoost (with optimised parameters). The best results were obtained in the comparative test between 

African American and Caucasian patients, with the highest AUC performance at 0.65 ± 0.021, whereas the 

comparative test between Hispanic and Caucasian patients, in summary, shows the lowest results. XGBoost performed 

better than LR in all, except the comparison between Hispanic and Caucasian patients - the better performance of LR 

here can be due to potential linearity in the comparison, or the number of patients in the cohort.  

Table IV AUC and AP across all comparative tests for the second matched cohort and each of the three 

algorithms used (MIMIC-III). The values are represented with mean and standard deviation. 

 African American and Caucasian Hispanic and Caucasian  Hispanic and African American 

Model AUC AP AUC AP AUC AP 

LR 0.62 ± 0.02 0.61 ± 0.055 0.62 ± 0.033 0.57 ± 0.048 0.62 ± 0.036 0.59 ± 0.06 

XGBoost Default 0.62 ± 0.017 0.61 ± 0.067 0.53 ± 0.035 0.55 ± 0.040 0.61 ± 0.035 0.56 ± 0.05 

XGBoost Optimised 0.65 ± 0.021 0.64 ± 0.075 0.60 ± 0.026 0.58 ± 0.062 0.64 ± 0.038 0.58 ± 0.056 

 

The AUC-ROC and AU-PRC are displayed in Table V. Between the three comparative tests, the graphs show the best 

results in the comparison between African Americans and Caucasians. The other two comparative tests show 

marginally worse results, which was expected considering the low number of Hispanic patients remaining after the 

selection criteria were applied to the MIMIC-III dataset. 

Table V AUC-ROC and AU-PRC for the second matched cohort across all comparative tests (MIMIC-III) 

African American and Caucasian Hispanic and Caucasian Hispanic and African American 
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3.3 VARIABLE IMPORTANCE (EICU-CRD AND MIMIC-III) 
In order to understand our results better, we wanted to analyse which variables contributed most to the prediction 

outcome. Since the optimised XGBoost algorithms provided the best results in all cases, we inspected the variable 

importance of the optimised XGBoost model for each comparative test. We used the SHAP (SHapley Additive 

exPlanations) values to tell us how much each input variable in the model contributed to the prediction. The SHAP 

beeswarm plots across all comparative tests for the second matched cohort in the eICU-CRD are displayed in Table 

VI. When comparing African American and Caucasian patients, we see that the beeswarm plot shows the oxygen 

saturation carries high importance for the XGBoost classifier. This was true also for the MIMIC-III cohort 

The mean value of the oxygen saturation is important in the comparison of Hispanics and Caucasians, as well. In this 

comparison, the maximum respiration is also important to the model. When comparing Hispanic and African 

American patients the respiration maximum and variance were among the most relevant variables for the model, which 

was also the case when comparing Hispanic with Caucasian patients. 

Table VI SHAP beeswarm variable importance for the second matched cohort across all comparative tests 

(eICU-CRD) 

African American and Caucasian Hispanic and Caucasian Hispanic and African American 

   

 

We performed the variable analysis on the MIMIC-III dataset, and we again focused on the results provided by the 

optimised XGBoost (in spite of LR performing better in the case of Hispanic and Caucasian patients, the difference 

in the result is not significant). The SHAP beeswarm plots across all comparative tests for the second matched cohort 

are displayed in Table VII. The oxygen saturation and diastolic blood pressure are among the topmost important 

features in the comparative tests between the African American and Caucasian patients, and Hispanic and Caucasian 

patients. When comparing African American and Hispanic patients the heart rate variables significantly contribute to 

the decisions of the model. 
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Table VII SHAP beeswarm variable importance for the second matched cohort across all comparative tests 

(MIMIC-III) 

African American and Caucasian Hispanic and Caucasian Hispanic and African American 

   

 

4 DISCUSSION  

From the eICU-CRD results, it can be observed that across all comparative tests the optimised XGBoost performed 

well with respect to identifying the race-ethnicity from the vital signs after matching for age, gender and diagnosis. 

When comparing African Americans and Caucasians, the AUC-ROC and AU-PRC showed the best predictive 

performance of the algorithms compared to the other two comparative tests. Additionally, in comparing African 

Americans and Caucasians the standard deviations of each algorithm are lower compared to the other two comparative 

tests. This outcome can be a result of the number of patients representative of each ethno-race in the comparative tests; 

namely, during the matching process, we can see the resulting data for the African American and Caucasian 

comparative test has approximately thrice the number of patients in the Hispanics and Caucasians and Hispanics and 

African Americans patient pools. However, the significantly larger number of patients does not provide a pronounced 

difference in the results, signalling that it might be that the selected variables do not offer additional insight into the 

distinction between two ethno-races. We observed lower model performance on the MIMIC-III dataset, in part due to 

the lower number of patients selected from the MIMIC-III. However, the MIMIC-III results follow the same trend, 

i.e., the best results were obtained in the second matched cohort (where the gender was the primary match feature), 

the comparative tests of African American and Caucasian patients showed best results across all matched cohorts, and 

the oxygen saturation is the most important feature for the African American and Caucasian patients, and the Hispanic 

and Caucasian patients.  

While the results show that a definite division between each ethno-race cannot be obtained, the success of the model 

in classifying two out of three patients correctly cannot be accidental. The models are using only the information from 

patients’ vital signs, suggesting that routinely collected information in the first 24 hours of admission, excluding 

demographic information, can provide information about the race-ethnicity even when such information is removed 

from the dataset. 

These results could be influenced by several factors. Firstly, the bias can be introduced from the socio-economic 

factors, that is patients from ethno-racial minorities tend to have poorer preventive care, and consequently once 

admitted into the ICU they can be in significantly worse condition compared to other ethno-races even with the same 

admission diagnosis that we control for. Additionally, there is potential for underlying issues regarding the accuracy 

of medical equipment across different populations. For example, it was shown that pulse oximeters were inaccurate 

for certain races, which came to light during the COVID crisis, resulting in hidden hypoxemia among patients of 

colour [18]. This was further investigated, and studies showed that oxygen saturation levels had greater variability in 

patients who identified as African American, followed by Hispanic, Asian, and lastly, Caucasian patients. While our 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 4, 2022. ; https://doi.org/10.1101/2022.02.03.22270291doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.03.22270291
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

saliency analysis showed oxygen saturation as an important variable, this may not fully explain our finding as we used 

measures from arterial oxygen saturation measured directly through blood gas analysis, rather than pulse oximetry, 

where the discrepancies were found. 

5 CONCLUSIONS 

ML applications in medicine show success in performing tasks such as diagnosis and prognostication at the same level 

as experts. However, various studies have demonstrated how ML applications can be biased and therefore affect 

patients unfairly, favouring one group of patients over the other depending on race, income, etc. The bias observed in 

ML applications can be a result of the model development or be introduced by the data used for training algorithms. 

Therefore, we focused on analysing the presence of ethno-racial bias in clinical data, by investigating if vital signs 

could give ML models enough information to determine a patient’s ethno-race correctly. We compared the 

performance of three separate models in three distinct matched cohorts for two different datasets. Due to the similarity 

of the results between the cohorts, we focused on further analysing the results obtained from one of the cohorts. Our 

results show that two of three patients in all comparative tests have their ethno-race correctly identified, and the most 

important variables in the model decisions proved to be oxygen saturation and respiration.  
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1. APPENDIX 1 - MATCHING COHORT 

A matched cohort in our case represents a dataset created of pairs of patients from two different ethno-racial groups, 

who may differ with respect to their individual vital signs, however, are matched through the same specific baseline 

characteristics, namely age, gender and admission diagnosis. From the dataset with three ethno-races present, we 

created three ethno-race-based divisions for matching: African Americans vs. Caucasians, Hispanics vs. Caucasians, 

Hispanics vs. African Americans. For each of the three baseline characteristics (age, gender, diagnosis), we created 

three feature-prioritising processes for matching, each taking on one of the features as a priority in the matching 

process. The matching process sought to match each of the patients from the minority class with a patient from the 

majority class, initially and if possible, on all three features, and if there were no matches made where all three features 

corresponded, then for the remaining unmatched patients the matching was based on the prioritised feature.  

● Match 1: The first match process prioritised the diagnosis, therefore the matching between the two ethno-

racial groups followed three stages: the patients were matched on three features, then if no match was made 

the patients were matched on the combination of diagnosis-gender equality or diagnosis-age equality, and 

lastly, if no matches were found in the second stage the match was made on diagnosis only.  

● Match 2: The second match process prioritised the gender feature, therefore the matching between the two 

ethno-racial groups followed three stages: the patients were matched on three features, then if no match was 

made the patients were matched on the combination of gender-age equality or gender-diagnosis equality, and 

lastly, if no matches were found in the second stage the match was made on gender only.  

● Match 3: The third match process prioritised the age, therefore the matching between the two ethno-racial 

groups followed three stages: the patients were matched on three features, then if no match was made the 

patients were matched on the combination of age-diagnosis equality or age-gender equality, and lastly, if no 

matches were found in the second stage the match was made on age only. In each of the three matching 

processes, if by the end a patient from the minority class had no matched patient from the majority class, then 

the patient from the minority class was dropped.  

The process provided a total of nine datasets, where each of the three ethno-race-based divisions were combined with 

each of the three feature-prioritising processes. The details on the patients matched and the resulting number of patients 

per cohort in each of the nine perfectly-balanced datasets is given in Table I.  

Table I The number of patient pairs matched through each matching process (and corresponding feature 

groups) across each comparative test (eICU-CRD and MIMIC-III) 

 Matched on African American and Caucasian Hispanic and Caucasian Hispanic and African American 

eICU-CRD 

Match 1 All three features 2095 (62.6%) 837 (72%) 327 (29.3%) 

Diagnosis gender 1189 (35.5%) 321 (27.6%) 727 (65.2%) 

Diagnosis age 46 (1.4%) 4 (0.4%) 26 (2.3%) 

Diagnosis 14 (0.5%) 0 (0%) 36 (3.2%) 

Total  3344 1162 1116 

Match 2 All three features 2095 (62.6%) 837 (72.1%) 327 (28.1%) 
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Gender age 844 (25.2%) 231 (19.9%) 533 (45.8%) 

Gender diagnosis 407 (12.2%) 93 (8%) 303 (26.1%) 

Gender 0 (0%) 0 (0%) 0 (0%) 

Total  3346 1161 1163 

Match 3 All three features 2095 (62.6%) 837 (72.1%) 327 (28.2%) 

Age diagnosis 22 (0.7%) 4 (0.3%) 26 (2.3%) 

Age gender 1230 (36.7%) 320 (27.6%) 792 (68.4%) 

Age 0 (0%) 0 (0%) 13 (1.1%) 

Total 3347 1161 1158 

MIMIC-III 

Match 1 All three features 313 (34.1%) 115 (34.02%) 15 (6.15%) 

Diagnosis gender 541 (58.93%) 199 (58.88%) 185 (75.82%) 

Diagnosis age 15 (1.63%) 4 (1.18%) 3 (1.23%) 

Diagnosis 49 (5.34%) 20 (5.92%) 41 (16.8%) 

Total  918 338 244 

Match 2 All three features 313 (23.48%) 115 (23.71%) 15 (3.02%) 

Gender age 909 (68.19%) 328 (67.63%) 402 (81.05%) 

Gender diagnosis 111 (8.33%) 42 (8.66%) 68 (13.71%) 

Gender 0 (0%) 0 (0%) 11 (2.22%) 

Total  1333 485 496 

Match 3 All three features 313 (23.48%) 115 (23.71%) 15 (3.1%) 

Age diagnosis 5 (0.38%) 3 (0.62%) 3 (0.62%) 

Age gender 1015 (76.14%) 367 (75.67%) 451 (93.18%) 

Age 0 (0%) 0 (0%) 15 (3.1%) 

Total 1333 485 484 

 

Table II Cohort characteristics table for each comparative test in the first matched cohort (eICU-CRD). 

Continuous variables are represented as medians and IQRs. 

 African American and Caucasian Hispanic and Caucasian Hispanic and African American 

Variables African 

American 

Caucasian p-value Hispanic Caucasian p-value Hispanic African 

American 

p-value 

Patients 

(number) 

3344 3344 - 1162 1162 - 1116 1116 - 

Gender 

(male) 

1804 

(53.95%) 

1818 

(54.36%) 

- 676 (58.18%) 674 (58.00%)  0.821 652 (58.42%) 642 (57.53%) - 

Age 58 [48, 67] 63 [53, 72] < 0.001 62 [51, 73] 65 [55, 74] < 0.001 62 [51, 73] 60 [49, 68] < 0.001 

Heart rate 87 [75, 100] 84 [73, 97] <0.001 84 [73, 97] 83 [73, 95] 0.035 86 [75, 99] 86 [75, 99] 0.003 

SaO2 99 [97, 100] 98 [96, 99] <0.001 98 [96, 100] 98 [96, 99] <0.001 99 [97, 100] 99 [97, 100] 0.004 

Respiration 

rate 

18 [15, 23] 19 [15, 23] 0.297 19 [15, 23] 15 [15, 22] 0.002 19 [15, 23] 19 [15, 23] 0.488 

Systolic 126 [109, 122 [106, <0.001 124 [109, 123 [107, 0.020 126 [110, 124 [108, 0.006 
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blood 

pressure 

146] 139] 140] 141] 144] 143] 

Diastolic 

blood 

pressure 

62 [53, 71] 59 [51, 68] 0.098 59 [50, 68] 58 [51, 67] <0.001 61 [53, 70] 61 [53, 71] < 0.001 

Mean blood 

pressure 

82 [72, 93] 79 [70, 90] <0.001 80 [70, 90] 79 [70, 90] 0.420 82 [72, 93] 81 [72, 92] < 0.001 

 

Table III Cohort characteristics table for each comparative test in the third matched cohort (eICU-CRD). 

Continuous variables are represented as medians and IQRs. 

eICU-CRD African American and Caucasian Hispanic and Caucasian Hispanic and African American 

Variables African 

American 

Caucasian p-value Hispanic Caucasian p-value Hispanic African 

American 

p-value 

Patients 

(number) 

3347 3347 - 1161 1161 - 1158 1158 - 

Gender 

(male) 

1802 

(53.84%) 

1810 

(54.08%) 

- 674 (58.05%) 674 (58.05%)  0.821 672 (58.03%) 659 (56.91%) - 

Age 58 [48, 67] 58 [48, 67] 0.884 62 [51, 73] 62 [51, 73] 0.801 62 [51, 73] 62 [51, 73] 0.535 

Heart rate 87 [75, 100] 85 [74, 98]  0.008 84 [73, 97] 84 [74, 96] 0.315 84 [73, 97] 86 [75, 99] 0.084 

SaO2 99 [97, 100] 98 [96, 99] <0.001 98 [96, 100] 98 [96, 99] 0.001 98 [96, 100] 99 [97, 100] 0.002 

Respiration 

rate 

18 [15, 23] 19 [15, 23] 0.198 19 [15, 23] 18 [15, 23] 0.746 19 [15, 23] 19 [15, 23] 0.490 

Systolic 

blood 

pressure 

126 [109, 

146] 

121 [106, 

138] 

<0.001 124 [109, 

140] 

122 [106, 

139] 

0.006 124 [109, 

140] 

125 [108, 

144] 

0.183 

Diastolic 

blood 

pressure 

62 [53, 71] 60 [52, 69] 0.004 59 [50, 68] 59 [51, 68] 0.253 59 [50, 68] 61 [52, 70] 0.002 

Mean blood 

pressure 

82 [72, 93] 80 [70, 90] < 0.001 80 [70, 90] 79 [70, 90] 0.698 80 [70, 90] 81 [72, 92] < 0.001 

 

 

Table IV Cohort characteristics table for each comparative test in the first matched cohort (MIMIC-III). 

Continuous variables are represented as medians and IQRs. 

MIMIC-III African American and Caucasian Hispanic and Caucasian Hispanic and African American 

Variables African 

American 

Caucasian p-value Hispanic Caucasian p-value Hispanic African 

American 

p-value 

Patients 

(number) 

918 918 - 338 338 - 244 244 - 

Gender 

(male) 

417 (45.42%) 443 (48.26%) - 215 (63.61%) 213 (63.02%) - 158 (64.75%) 142 (58.2%)  - 

Age 62 [51, 73] 66 [56, 77] 0.014 55 [44, 68] 63 [51, 74] < 0.001 54 [42, 69] 59 [49, 70] 0.020 

Heart rate 87 [75, 100] 84 [71, 96] < 0.001 89 [78, 102] 87 [75, 98] 0.050 90 [79, 103] 86 [74, 102] 0.607 

SaO2 99 [97, 100] 98 [96, 100] 0.081 99 [97, 100] 98 [96, 100] 0.655 99 [97, 100] 99 [97, 100] 0.104 

Respiration 

rate 

18 [14, 22] 18 [14, 22] 0.787 17 [14, 21] 19 [15, 22] < 0.001 18 [14, 22] 17 [14, 21] 0.074 

Systolic 

blood 

pressure 

119 [103, 

138] 

116 [102, 

132] 

0.008 117 [104, 

134] 

112 [100, 

129] 

0.042 118 [104, 

134] 

117 [102, 

135] 

0.712 

Diastolic 

blood 

pressure 

61 [54, 70] 56 [49, 65] 0.004 62 [55, 71] 57 [51, 65] < 0.001 62 [55, 71] 60 [53, 69] 0.806 

Mean blood 

pressure 

80 [70, 92] 76 [68, 86] 0.067 80 [72, 91] 76 [67, 86] 0.017 80 [72, 91] 78 [70, 90] 0.775 

 

Table V Cohort characteristics table for each comparative test in the third matched cohort (MIMIC-III). 

Continuous variables are represented as medians and IQRs. 

 African American and Caucasian Hispanic and Caucasian Hispanic and African American 
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Variables African 

American 

Caucasian p-value Hispanic Caucasian p-value Hispanic African 

American 

p-value 

Patients 

(number) 

1333 1333 - 485 485 - 484 484 - 

Gender 

(male) 

606 (45.46%) 612 (45.91%) - 301 (62.06%) 301 (62.06%) - 303 (62.6%) 288 (59.5%) - 

Age 61 [51, 72] 61 [51, 72] 0.379 55 [43, 68] 55 [43, 68] 0.765 55 [44, 68] 55 [44, 68] 0.205 

Heart rate 87 [75, 100] 85 [74, 97] 0.810 89 [78, 103] 87 [76, 98] 0.101 89 [78, 102] 87 [75, 100] 0.136 

SaO2 99 [97, 100] 99 [96, 100] 0.572 99 [97, 100] 99 [97, 100] 0.125 99 [97, 100] 99 [97, 100] 0.576 

Respiration 

rate 

18 [14, 22] 18 [14, 21] 0.161 17 [14, 21] 18 [14, 22] 0.078 17 [14, 21] 18 [14, 22] 0.066 

Systolic 

blood 

pressure 

119 [103, 

138] 

114 [101, 

130] 

0.010 117 [104, 

134] 

113 [100, 

129] 

0.394 117 [104, 

134] 

121 [105, 

140] 

0.446 

Diastolic 

blood 

pressure 

61 [54, 70] 57 [50, 65] 0.287 62 [54, 71] 58 [51, 67] 0.005 62 [54, 70] 63 [55, 72] 0.276 

Mean blood 

pressure 

80 [70, 92] 76 [68, 86] 0.012 80 [71, 91] 76 [68, 87] 0.017 80 [71, 91] 81 [72, 93] 0.176 

2. APPENDIX 2 - SELECTED VARIABLES, MEASUREMENT UNITS AND 

VALID CLINICAL RANGES 

Table I Variables used in the research, their unit, and the ranges considered during the selection criteria (eICU-

CRD). 

 Patients’ general 

information 

Patients’ medical 

condition 

Patient’s vital signs 

Variable age gender diagnosis patient’

s status 

heart 

rate 

oxygen 

saturation 

respiration 

rate 

systolic 

blood 

pressure 

diastolic 

blood 

pressure 

mean 

blood 

pressure 

Unit years binary text binary bpm % insp/min mmHg mmHg mmHg 

Range 18-89 male/female / alive 0-300 0-100 0-200 0-300 0-300 0-300 

 

3. APPENDIX 3 - FULL OVERVIEW OF RESULTS  

Table I AUC and AP across all comparative tests for each matched cohort and each of the three algorithms 

used (eICU-CRD and MIMIC-III) 

 African American and Caucasian Hispanic and Caucasian  Hispanic and African American  

eICU-CRD 

Metric AUC AP AUC AP AUC AP Model 

Match 1 0.62 ± 0.02 0.62 ± 0.06 0.6 ± 0.05 0.57 ± 0.037 0.66 ± 0.061 0.63 ± 0.066 LR 

0.7 ± 0.02 0.65 ± 0.069 0.62 ± 0.03 0.60 ± 0.05 0.67 ± 0.038 0.63 ± 0.067 XGBoost Default 

0.75 ± 0.023 0.70 ± 0.092 0.66 ± 0.038 0.62 ± 0.057 0.69 ± 0.043 0.64 ± 0.069 XGBoost 

Optimised 
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Match 2 0.64 ± 0.016 0.62 ± 0.059 0.63 ± 0.056 0.58 ± 0.042 0.70 ± 0.051 0.62 ± 0.064 LR 

0.71 ± 0.023 0.66 ± 0.071 0.64 ± 0.04 0.60 ± 0.062 0.69 ± 0.041 0.61 ± 0.053 XGBoost Default 

0.75 ± 0.019 0.70 ± 0.089 0.67 ± 0.047 0.63 ± 0.065 0.72 ± 0.045 0.65 ± 0.081 XGBoost 
Optimised 

Match 3 0.62 ± 0.025 0.62 ± 0.052 0.61 ± 0.053 0.58 ± 0.045 0.66 ± 0.048 0.61 ± 0.059 LR 

0.71 ± 0.018 0.66 ± 0.071 0.61 ± 0.038 0.58 ± 0.044 0.67 ± 0.025 0.60 ± 0.053 XGBoost Default 

0.75 ± 0.022 0.69 ± 0.085 0.65 ± 0.056 0.62 ± 0.062 0.71 ± 0.044 0.64 ± 0.076 XGBoost 
Optimised 

MIMIC-III 

Metric AUC AP AUC AP AUC AP Model 

Match 1 0.58 ± 0.04 0.61 ± 0.053 0.59 ± 0.042 0.56 ± 0.056 0.63 ± 0.039 0.55 ± 0.049 LR 

0.62 ± 0.018 0.61 ± 0.064 0.55 ± 0.044 0.59 ± 0.067 0.56 ± 0.051 0.52 ± 0.041 

 

XGBoost Default 

0.64 ± 0.024 0.63 ± 0.071 0.54 ± 0.038 0.58 ± 0.052 0.61 ± 0.035 0.54 ± 0.062 XGBoost 

Optimised 

Match 2 0.62 ± 0.02 0.61 ± 0.055 0.62 ± 0.033 0.57 ± 0.048 0.62 ± 0.036 0.59 ± 0.06 LR 

0.62 ± 0.017 0.61 ± 0.067 0.53 ± 0.035 0.55 ± 0.040 0.61 ± 0.035 0.56 ± 0.05 XGBoost Default 

0.65 ± 0.021 0.64 ± 0.075 0.60 ± 0.026 0.58 ± 0.062 0.64 ± 0.038 0.58 ± 0.056 XGBoost 

Optimised 

Match 3 0.62 ± 0.024 0.60 ± 0.048 0.62 ± 0.033 0.57 ± 0.048 0.63 ± 0.058 0.59 ± 0.07 LR 

0.61 ± 0.029 0.61 ± 0.065 0.53 ± 0.035 0.55 ± 0.04 0.59 ± 0.045 0.56 ± 0.049 XGBoost Default 

0.63 ± 0.032 0.63 ± 0.074 0.60 ± 0.026 0.58 ± 0.062 0.60 ± 0.036 0.56 ± 0.046 XGBoost 

Optimised 

 

4. APPENDIX 4 - AUC-ROC AND AU-PRC FOR THE FIRST AND 

THIRD MATCHED COHORT ACROSS ALL COMPARATIVE TESTS 

Table I AUC-ROC and AU-PRC for the first and third matched cohort across all comparative tests (eICU-

CRD) 

First matched cohort 

African American and Caucasian Hispanic and Caucasian Hispanic and African American 
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Third matched cohort 

African American and Caucasian Hispanic and Caucasian Hispanic and African American 

   

   

 

Table II AUC-ROC and AU-PRC for the first and third matched cohort across all comparative tests 

(MIMIC-III) 

First matched cohort 

African American and Caucasian Hispanic and Caucasian Hispanic and African American 
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Third matched cohort 

African American and Caucasian Hispanic and Caucasian Hispanic and African American 
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