
INTRODUCTION

“Man is by nature a social animal; an individual
who is unsocial naturally and not accidentally is
either beneath our notice or more than human. Soci-
ety is something that precedes the individual. Anyone
who either cannot lead the common life or is so self-
sufficient as not to need to, and therefore does not
partake of society, is either a beast or a god.”

Aristotle (384 BC–322 BC)

Despite the fact that the interest of humanists
in understanding social behavior dates back to
the times of ancient civilizations, it is significant
to note that first incidences of scientific data col-
lection on human interactions took place in the
beginning of the 20th century, relying on surveys
or engaging a human observer who was taking
notes about social interactions within monitored
groups. Nowadays, a century later, the same
methods for analyzing social behavior are still
prevalent in social and health sciences, although
they have a number of shortcomings. Periodical
surveys, diaries, and similar self-reporting meth-
ods suffer from memory dependence, recall bias,

and high end-user effort for continuous long-
term monitoring [1]. Moreover, they correspond
poorly to communication patterns as recorded by
independent observers [2]. Albeit a more reliable
method, relying on a human observer to record
social interactions in groups is inefficient, partic-
ularly if the size of the group is large, the interac-
tions occur in various physical locations, or the
study requires longitudinal data collection [3].

The advent of sensor-based instruments for
recording social activity of individuals is consid-
ered to be a critical point in the evolution of
social behavior analysis, exhibiting the potential
to overcome the limitations of self-reporting and
observational methods [1]. Buchanan [4] envi-
sioned that sensors will transform social sciences
as much as microscopes transformed medicine in
the 18th and the 19th century. Undoubtedly,
pervasive computing paradigms have already
enabled new findings on social interaction phe-
nomena by providing automatic recognition of
social encounters as well as insight into domains
that are difficult or impossible to record by
hand-annotating methods. However, despite the
rapid development of technology, health and
social scientists still do not rely on automatic
tools to a great extent. 

The drawbacks of the current sensor-based
methods can shed light on why self-reports are
still prevalent for collecting social interaction
data. Existing solutions for recognizing social
interactions mostly require expensive infrastruc-
tures, which spatially constrain applications,
involve devices that are often not available off
the shelf, provide limited accuracy in gathering
real-time data with spatial and temporal granu-
larities, or make use of microphones/cameras,
the activation of which may raise privacy con-
cerns in monitored subjects. Furthermore,
acquiring high-quality social interaction data typ-
ically requires use of more invasive methods that
tend to affect the natural behavior of subjects
and consequently the reliability of measure-
ments. When monitoring social interactions
there is a trade-off between the quality of col-
lected data and the level of attaining real-life
conditions in experiments. 

In this article, we analyze aspects of sensor-
based approaches for monitoring social interac-
tions with the focus on trade-offs of
approximating natural experimental settings: the
level of obtrusiveness, respecting the subject’s
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ABSTRACT

Social interaction is one of the basic compo-
nents of human life that impacts thoughts, emo-
tions, decisions, and the overall wellbeing of
individuals. In this regard, monitoring social activi-
ty constitutes an important factor in a number of
disciplines, particularly those related to social and
health sciences. Sensor-based social interaction
data collection has been seen as a groundbreaking
tool, having the potential to overcome the draw-
backs of traditional self-reporting methods and
revolutionize social behavior analysis. However,
monitoring of social interactions typically implies a
trade-off between the quality of collected data and
the levels of unobtrusiveness and privacy respect,
aspects that can affect spontaneity in subjects’
behavior. In this article we discuss the challenges
of automatic monitoring of social interactions; then
we provide an overview of the current automatic
monitoring concepts and the associated trade-offs.
We finally present our approach of using non-visu-
al and non-auditory mobile sources that mitigate
privacy concerns and do not interfere with individ-
uals’ daily routines, while providing a reliable plat-
form for social interaction data collection.
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privacy, and spatial restrictions. We consider
social interactions that occur on a small spatio-
temporal scale (i.e., collocated face-to-face con-
versations) to which we refer in the rest of this
article. We provide an overview of the current
approaches to collecting social interaction data
and discuss the main trade-offs with respect to
different monitoring solutions. Furthermore, we
propose the concept of sensing social interactions
by using non-visual and non-auditory mobile
sources that do not capture privacy-sensitive
data, do not spatially limit the applications, and
minimize interference with typical daily activities.

THE CHALLENGES OF
AUTOMATIC MONITORING OF

SOCIAL INTERACTIONS

“To observe is to disturb.”
Werner Heisenberg (1901–1976)

Monitoring social interactions represents an
important aspect of social behavior analysis, a
domain that has a wide-reaching multidisci-
plinary impact. These disciplines range from
medicine, where quantitative evaluation of social
activity represents a tool in coaching and diagno-
sis, to economics where social relationships are
used to model both micro- and macroeconomic
phenomena, to anthropology, which analyzes dif-
ferences in social behavior across different cul-
tures, to epidemiology, which examines
interpersonal contacts as the main cause behind
the spread of an epidemic, to social psychology,
which studies how individuals’ thoughts, feelings,
and behaviors are influenced by the presence of
other people. It is of interest to all these disci-
plines to capture and analyze spontaneous social
interactions that occur in natural conditions,
which pertains to recording people as they freely
go about their lives [5]. The ultimate goal is to
develop an automatic method that provides the
highest precision in collecting social interaction
data that is fully privacy respecting and entirely
unobtrusive for users. In practice there is typical-
ly a trade-off between these aspects — the more
privacy respecting and unobtrusive the approach
is, the more limited are the possibilities of
acquiring social interaction data [6]. 

OBTRUSIVENESS
One of the main challenges in the research domain
of automatic sensing social interactions and, in gen-
eral, human behavior is performing data collection
in a manner invisible from the subjects’ perspective.
Having visible sensors, moreover ones that may
interfere with daily activities, reminds subjects that
they are being monitored, which can influence their
behavior, and consequently affect the reliability and
objectiveness of measurements. Therefore, extract-
ing the most information out of the least obtrusive
sources is the objective when collecting social inter-
action data. However, this is a challenging problem
since noninvasive methods typically result in output
that is difficult to process effectively; vice versa,
invasive methods provide more detailed informa-
tion that is easier to process but tends to affect the
behavior of monitored subjects [6].

PRIVACY

In addition to physical obtrusiveness, monitoring
of human behavior is often closely linked to dis-
turbing one’s privacy. Privacy issues relate to an
array of ethical norms that need to be addressed.
All subjects in the study should always know that
they are being monitored; moreover, they must
have the right to authorize the use and diffusion
of the collected data [6]. If monitoring involves
audio or video archives, they can be partially or
totally deleted by subjects, while recording unin-
volved parties without their consent is considered
unethical and illegal [5]. However, despite
addressing all the ethical norms, people are
prone to change their behavior if they have con-
cerns about the method of monitoring, which
negatively affects the reliability of the collected
data. In particular, the presence of audio/video
data analysis becomes an issue to consider. Even
though privacy sensitive recording techniques can
be applied, the fact that a microphone or a cam-
era is activated may still raise concerns. This
often depends on the technical education and
cultural background of monitored subjects, which
can affect their perception of privacy [7, 8]. On
the other hand, protecting privacy often implies
discarding sociologically useful information [5],
which is not always an acceptable compromise. 

The common challenges of automatic moni-
toring of social interactions (i.e., obtrusiveness
and privacy respect) illuminate a well-known
trade-off between the spectrum/quality of col-
lected data and enabling natural conditions,
where the solution reflects the trade-off. In the
following section, we discuss the most common
sensor-based concepts for monitoring social
interactions and the associated trade-offs.

OVERVIEW OF EXISTING
SENSOR-BASED APPROACHES FOR

COLLECTING SOCIAL
INTERACTION DATA

A steady decrease in device form factor, coupled
with an increase in computational capabilities, has
enabled automatic monitoring of many aspects of
social behavior, from quantifying dynamics of
social activity to extracting various nonverbal
behavior cues expressed during social interactions.
The choice of sensors and their arrangement in
experimental settings determines the level of pri-
vacy and obtrusiveness, and the spectrum of inter-
action data that can be extracted. The use of
video/audio infrastructure, wearable dedicated
hardware, or mobile phones provide different
trade-offs between the quality of collected data
and the constraints for experimental settings. 

VIDEO/AUDIO INFRASTRUCTURES
Video/audio infrastructure refers to the equip-
ment installed in a specified area for a specific
scenario (rather than for a longitudinal study), in
order to track social interactions and extract
behavioral cues for the analysis. Automatic
video/audio analysis of face-to-face social interac-
tions extracts an ample spectrum of information
that can provide high scientific and technological

The ultimate goal is

to develop an auto-

matic method that

provides the highest

precision in collecting

social interaction

data, and is fully pri-

vacy respecting and

entirely unobtrusive

for users. 

In practice, there is

typically a trade-off

between these

aspects.

MATIC LAYOUT_Layout 1  6/26/13  12:16 PM  Page 115



IEEE Communications Magazine • July 2013116

value. Since subjects are not required to wear sen-
sors, such systems allow monitoring in a physically
non-intrusive manner (except for cases when
microphones with headsets need to be attached to
the subjects). However, the use of video/audio sys-
tems typically implies mobility restrictions to the
monitored subjects since video analysis requires a
direct line of sight between subjects and cameras,
while the audio data is captured from micro-
phones situated within the area of interest. In
addition, video and/or audio data can contain pri-
vacy sensitive information, thus creating additional
issues when monitoring social interactions. 

WEARABLE DEVICES
Dedicated Hardware — As opposed to
video/audio infrastructures, wearable solutions
are mostly used for recording occurrences of
social interactions and quantifying dynamics of
social activity on a long-term scale. To achieve
high accuracy in detecting the occurrence of
face-to-face social interactions in a mobile way
requires knowledge of both the proximity of sub-
jects and their speech activity status. In order to
infer speech activity status, dedicated wearable
devices typically involve audio analysis, which
can face ethical issues and privacy concerns.
Besides, most dedicated devices for inferring
face-to-face contacts require a direct line of sight
between two units, which imposes a specific
position on the body for their placement; there-
fore, such approaches are prone to affect the
natural behavior of the subjects since they can
interfere with daily activities. 

One way to address the issue of stigmatizing
subjects is to utilize the sensing capabilities
available in one of the most familiar devices: the
mobile phone. 

Mobile Phone Sensing — The rapid adoption
of mobile phones brings the opportunity for
unobtrusive and continuous monitoring of social
interactions and, in general, individuals’ behavior
[1]. The challenge is how to address monitoring
of specific activities relying on existing sensing
technologies that are embedded in mobile
phones, which is an issue not encountered when
using specific-purpose-manufactured devices that
already have dedicated sensors incorporated. 

Current work on mobile phone sensing to
detect social interactions has relied mostly on
using Bluetooth to sense nearby mobile phones.
Using Bluetooth as a proximity sensor to recon-
struct social dynamics on a large scale has been
extensively investigated under the umbrella of
the reality mining initiative [9]. Since the Blue-
tooth communications range is on the order of
10 m, this approach provides only coarse spatial
granularity in recognizing interpersonal dis-
tances; therefore, knowledge of the proximity of
individuals is used to model the dynamics of
social interactions on a large scale rather than to
detect each single social encounter that takes
place on a small spatio-temporal scale. 

In order to address the limitation of Blue-
tooth scans to detect actual face-to-face proximi-
ty between subjects, the Virtual Compass project
[10] estimates interpersonal distances using
received signal strength indicator (RSSI) analysis
of Bluetooth and Wi-Fi signals. By applying

empirical propagation models, the approach
achieves the median accuracy between 0.9 m and
1.9 m; however, the lack of subjects’ orientation
information and of speech activity might not be
sufficient for a highly accurate detection of face-
to-face social interactions. As an alternative
approach, recent research work [5] is extracting
audio data features using microphones from a
pair of collocated mobile phones in order to
detect who was speaking and when, thus detect-
ing face-to-face interactions. The algorithms usu-
ally do not capture raw audio data but a set of
features that does not contain verbal informa-
tion. However, the limitations of this approach
include:
• Sensitivity to false positives, since conversa-

tions occurring in close proximity of the
monitored subjects in which they are not
involved can be incorrectly classified.

• Activating a microphone can negatively
affect the perception of privacy in moni-
tored subjects while also requiring the con-
sent of surrounding individuals uninvolved
in the study. 

OUR APPROACH: 
COLLECTING SOCIAL INTERACTION
DATA USING NON-VISUAL AND

NON-AUDITORY SOURCES
It is interesting to note that the current systems
for automatic sensing of face-to-face social inter-
actions have mostly relied on the same senses as
human observers, the visual and auditory, thus
capturing video and/or audio data. However, as
previously discussed, the use of microphones and
cameras can negatively affect the subjects’ per-
ception of privacy; moreover, video systems con-
strain the movements of monitored subjects into
areas covered by machine vision systems. There-
fore, the question is whether face-to-face social
interactions can be reliably detected without using
visual and auditory sources.

THE MAIN CONCEPT
One can estimate whether two persons are hav-
ing a face-to-face conversation by simply observ-
ing them from a relatively long distance in an
unobtrusive manner and judging solely by the
mutual position of their bodies. In order to
ascertain if they are talking or just facing each
other but not interacting, it is necessary to obtain
evidence about speech activity. However, getting
within earshot of monitored subjects may raise
privacy concerns and consequently affect their
natural behavior. Detecting speech activity while
not affecting perception of privacy and observing
the mutual position of subjects’ bodies unobtru-
sively would lead toward capturing the natural
behavior of subjects. This principle was followed
to develop our approach, which is intended for
continuous monitoring of face-to-face social
interactions while not using visual or auditory
sources. In the following, we describe our con-
cept of exploiting advantages of sensors that,
unlike human senses, are able to detect interper-
sonal spatial settings and speech activity using
neither visual nor auditory information. 
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INFERRING INTERPERSONAL SPATIAL SETTINGS

Our first task is to infer spatial settings between
subjects, described by parameters of interpersonal
distance and relative body orientation. This is
because setting appropriate spatial settings is a
prerequisite for carrying out a face-to-face conver-
sation. In particular, Groh et al. [11] demonstrated
that these two parameters provide sufficient evi-
dence to detect the occurrence of social interac-
tion, but using a highly precise camera-beacon
system with the accuracy of <1 mm and <1°. In
our approach we have avoided the use of a cam-
era, which may contain sensitive information. We
demonstrated in [12] that spatial settings parame-
ters can be extracted by using mobile phone sens-
ing mechanisms with a sufficiently high precision
to indicate social encounters. In the following, we
provide the main concepts of our method for
inferring interpersonal spatial settings.

Distance Estimation — Existing solutions for
distance estimation between two mobile phones
exploit either acoustic components or mechanisms
for transmitting/receiving radio signals. There have
only been a few solutions based on the former
approach, which used ultrasound [13] (which is
not available in standard mobile phones) or acous-
tic signals emitted from the speaker [14] (which
require devices to be within earshot/non-noisy
environments and also can cause privacy concerns
due to microphone activation). The current litera-
ture mostly reports the use of electromagnetic
transmitting/receiving mechanisms to sense the
presence of nearby mobile phones (e.g., Bluetooth
scans [15, 16]) or to infer proximity based on col-
location (e.g., NearMe [17]). However, both
approaches have been shown to provide distance
estimation accuracy on the order of 10 m, which
does not suffice for detecting the occurrence of
social interaction on a small spatio-temporal scale. 

Our approach for estimating distance between
two mobile phones is based on RSSI analysis,
which has already been shown to be a promising
solution for indoor positioning. The RSSI-based
method is not limited to line of sight like infrared
sensors, and is not privacy-sensitive in comparison
to capturing audio data. In contrast to the
approach of building a generic empirical model
(regardless of the phone used, as implemented by
Virtual Compass), we map RSSI values to dis-
tances relying on supervised learning, thus trading
off between the accuracy in distance estimation
and the user effort in signal fingerprint collection.
The approach was tested using Wi-Fi signals (set-
ting the transmitting power to the minimal value
of 1 mW); however, other radio transmitting/
receiving mechanisms with accessible RSSI (e.g.,
FM [18] or Bluetooth) available in mobile phones
could be used for the same purpose or in combi-
nation with WiFi. We estimated the accuracy by
applying a cross-validation method: an RSSI pat-
tern captured in one out of six different environ-
ments (measuring Wi-Fi signal strength at
different distances while using two mobile phones
carried on a body, one in transmitting, the other in
receiving mode) was used for building the model
(i.e., a training set), while measurements from the
five remaining environments were used for testing.
In this manner, the procedure was repeated to

cover all the combinations regarding distinct train-
ing and test sets across six environments, which
demonstrated a median distance estimation accu-
racy of 0.5 m (Fig. 1). 

Considering the fact that RSSI patterns depend
on a wide array of factors including (but not limit-
ed to) receiver’s characteristics and the character-
istics of the environment, repeating the training
phase would be required often to prevent accuracy
degradation. However, unlike time-consuming
measurements typically required for fingerprinting
methods, our approach decreases the user effort
to only a couple of minutes for calibrating the
phone signal at one distance (e.g., 1 m) while esti-
mating the rest of the training set by applying the
signal propagation model. This resulted in accura-
cy comparable to a full fingerprinting method (the
median accuracy was again 0.5 m). Unexpectedly,
calibrating the phone and testing in the same envi-
ronment provided similar accuracy as in the case
of performing calibration and testing in different
environments (which was evidenced across all six
environments). This may be indicative that the
predominant factor that influences RSSI pattern
lies in a receiver’s characteristics, in our case cap-
tured through a fast calibration process. The less
prevalent impact of environmental conditions may
be explained by relatively short distances, and no
obstacles between receiver and transmitter that
could affect the signal propagation. In addition,
due to relatively short distances, calibrating the
phone signal only at one distance was proven to
be sufficient to provide the above-reported accura-
cy (in both indoor and outdoor conditions); how-
ever, we would expect higher discrepancies at
distances above 8 m (which are not relevant for
detecting social interactions). The details of our
approach and experiments can be found in [12]. 

Relative Body Orientation Detection — Rela-
tive body orientation refers to the angle between
the orientations of torsos considering two subjects
who are facing each other. In order to estimate rel-
ative body orientation, we used the compass sensor
embedded in modern mobile phones. Knowing the

Figure 1. Spatial settings detection.
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relationship between the body’s and the phone’s
orientation is the fundamental condition in order
to recognize the individual’s body orientation and
the relative body orientation between subjects.
Once the relationship between the body’s and the
phone’s orientation is determined, calculating the
relative body orientation requires a simple process-
ing of azimuth, pitch, and roll values acquired from
a pair of phones. The on-body position of the
mobile phone can be either reported by subjects or
automatically detected through existing algorithms
such as [19]. Our study [12] also suggested the use
of standard deviation of relative body orientation
as a suitable feature for social interaction analysis,
representing an index of stable relative position of
participants in a social encounter. The experiments
demonstrated that such an index contributes to
recognizing not only whether a social interaction is
taking place, but also the type of social interaction,
distinguishing between formal and informal social
contexts. Calculating the standard deviation of rel-
ative body orientation does not require users to
carry the phone at a predefined position on the
body or using complex algorithms to estimate the
phone position.

However, spatial settings alone do not always
provide enough evidence for inferring the occur-
rence of social interaction [5] (e.g., in the case of
two subjects sitting across from each other in an
office and not engaging in an interaction). There-
fore, the second task is acquiring knowledge
about the speech activity of collocated subjects.

SPEECH ACTIVITY
Although people, consciously and unconsciously,
communicate in a nonverbal way, speech is still
considered to be the main modality of a conversa-
tion and its direct manifestation [20]. Looking
from the perspective of a human observer whose
task is to collect interaction data, annotating the
occurrence of a conversation pertains to witness-
ing the speech activity, while most sensor-based
systems for detecting social interactions rely on
audio data analysis. In order to prevent a negative
impact on the perception of privacy in monitored

individuals, our approach is based on identifying a
manifestation of speech different than voice: the
vibration of vocal chords. In this regard, we use
an external off-the-shelf accelerometer intended
to infer speech activity by detecting vibrations at
the chest level that are generated by vocal chords
during phonation (details of our method are pro-
vided in [21]). Although a microphone embedded
in the mobile phone could be used for speech
detection (as in [5]), our system involves an addi-
tional sensor for several reasons. First, despite
privacy sensitive techniques, activating a micro-
phone may raise privacy concerns for subjects,
thus affecting their natural behavior. Second,
nearby conversations in which the monitored sub-
jects do not participate can be unintentionally
picked up by the microphone. Finally, in a num-
ber of situations (e.g., in public spaces or in the
case of monitoring patients), audio data cannot
be captured due to legal or ethical norms.

The concept of using an accelerometer for
recognizing speech activity is based on detecting
phonation-caused vibrations at the chest level,
targeting a frequency range between approxi-
mately 100 and 200 Hz (which is the predicted
fundamental frequency range of vocal chord
vibrations for adults over the age of 20). Figure 2
shows distinct examples of frequency spectra for
samples containing no voice, a male voice, and a
female voice captured in our experiments. It can
be noted that daily physical activities are not
expected to overlap with vocal chord vibrations
in the frequency domain since they typically
occupy frequency ranges lower than 20 Hz [22]. 

On the other hand, when using an off-the-shelf
accelerometer that is not manufactured specifical-
ly to detect chest vibrations, it is important to
examine if there are potential sources in everyday
life that produce components in the same range
of frequencies that can be confused with speech
activity. This concern refers mostly to low ampli-
tudes of the chest wall vibrations that may be sim-
ilar to noise level, while also the engines of
vehicles such as cars, buses, trains, and airplanes
can provide components in higher frequency

Figure 2. Speech detection.
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ranges that may result in false positives for speech
detection. In our experiments, we achieved an
accuracy in recognizing speech activity of 93 per-
cent when using a Shimmer accelerometer. How-
ever, intense physical activities and traveling on a
bus increased the rate of false positives up to 30
percent, which is an issue that can be addressed
by using a different type of accelerometer.

VALUE OF THE EXTRACTED INFORMATION
The two modalities, spatial settings recognition
and speech activity detection, provide comple-
mentary information for the analysis of social
interactions. We have applied these two sensing
modalities both separately and in fusion in a set
of different experimental settings, which will be
described in the following. 

First, we investigated if solely sensed spatial
settings provide sufficient information for detec-
tion of small-group face-to-face social interac-
tions. Relying on mobile phone sensing we were
capturing feature vectors composed of interper-
sonal distances (d), relative body orientation (a),
and standard deviation of relative body orienta-
tion (s). When applying probabilistic classifiers
on feature vectors (a, d), (s, d), and (s, a, d)
every timeframe of 10 s, the goal was to distin-
guish social interactions from non-existing social
situations. The experiments included 43 partici-
pants (not connected to this study) engaged in
42 social interactions (5.9 ± 4.0 min) monitored
in both indoor and outdoor conditions, which
resulted overall in 3500 collected timeframes of
10 s analyzed through the above-described fea-
ture vectors. In 18 social interactions, partici-
pants were asked to communicate, while the
remaining 24 interactions were captured while
occurring spontaneously and voluntarily (the
details of this study can be found in [23]). In
order to assess the potentials of using spatial
parameters to distinguish existing and nonexist-
ing social interactions, it was necessary to also
create a solid corpus of data that does not corre-
spond to social interactions. This included mea-
surements from previously described experiments
which included subjects that were in concurrent
social interactions and in close proximity (within
5 ¥ 5 m space). Table 1 shows the results for
the three types of feature vectors; the highest
accuracy was achieved using the 3-feature vector
(s, a, d), which resulted in 89 percent success-
fully classified vectors corresponding to social
interactions and 26 percent false positives. Using
the model based on the 2-feature vector (s, d)
provided accuracy of 79 percent with a relatively
high rate of false positives; however, it should be
noted that this model does not require users to
carry the phone at a predefined/known position
on the body as in the case of (a, d), which result-
ed in lower rates of both true and false positives. 

As previously mentioned, in certain situations
spatial settings do not provide enough evidence for
inferring the occurrence of social interaction, thus
also requiring knowledge of speech activity, as in
the case of two subjects sitting across from each
other in the office and not engaging in an interac-
tion. In order to evaluate performance of our sys-
tem in a continuous and challenging experimental
scenario, we recruited four subjects who share the
same office to carry the mobile phone and to wear

the accelerometer (for speech activity detection)
for seven days. Situations in which subjects hold
the position that indicates a conversation, albeit
not interacting, resulted in a higher rate of false
positives (as expected), particularly in the case of
using distance and the standard deviation of rela-
tive body orientation as a classification feature ((s,
d), Fig. 3). The issue of false positives can be
resolved by including the knowledge of speech
activity status, which we used to confirm or reject
the occurrence of a social interaction suggested by
inferred spatial settings (Fig. 3 — (s, a, d) +
speech). Therefore, the most accurate interaction
detection (approximately 90 percent) was achieved
by relying on the fusion of inferred speech activity
status and spatial setting parameters.

In addition to recognizing the occurrence of
face-to-face social interactions, the proposed
sensing platform provides a set of nonverbal cues
for the analysis of social interactions related to
interpersonal spatial settings and speech activity.
For instance, the amount of time that each par-
ticipant spent talking during a social encounter,
relative body orientations, an index of stable rela-
tive position of participants, and interpersonal
distances. We showed in [23] that the extracted
parameters provide meaningful information for
interpreting the social context. In particular, we
demonstrated the high predictive power of spa-
tial settings parameters (up to 81 percent) in
classifying the type of social interactions, per-
ceived by subjects as formal or informal.

We envision that our approach to monitoring
social interaction can provide a foundation for
developing a mobile instrument for gathering
rich and large-scale data, thus supporting
research in social interaction analysis.

Table 1. Classification results.

(a, d) (s, d) (s, a, d)

SI/NonSI SI/NonSI SI/NonSI

SI 74%  26% 79%  21% 89%  11%

NonSI 24%  76% 31%  69% 26%  74%

Figure 3. Accuracy in detecting social interactions.
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TRADE-OFF OF OUR APPROACH

As previously discussed, monitoring social inter-
actions implies a trade-off between the quality of
collected data and the levels of unobtrusiveness
and privacy respect, aspects that can affect fideli-
ty in subjects’ behavior. It was demonstrated that
our system provides reliable detection of social
interactions as well as the possibility to extract a
unique set of non-verbal cues in a mobile way.
Relying on non-visual and non-auditory sources
allows for a solution that is not expected to pro-
voke privacy and ethical issues — while being
based on wearable sensors, the proposed system
does not spatially restrict its applications. On the
other hand, the trade-offs are reflected in taking
on the challenges of interpreting noisy data (to
provide a mobile and unobtrusive solution for
inferring spatial settings) and involving an
accelerometer as an additional sensor (to pro-
vide a privacy respecting and mobile approach)
(Fig. 4). These trade-offs are discussed below.

INFERRING SPATIAL SETTINGS: TRADE-OFFS
Our method of inferring spatial settings among
subjects relies on sensing capabilities available in
one of the most familiar and widely used wearable
devices: the mobile phone. The fact that people
habitually carry mobile phones makes this device a
suitable source for unobtrusive and continuous
monitoring of social interactions. However, being
a device that is not dedicated to inferring face-to-
face social interactions, the mobile phone does not
provide interpersonal distances and body orienta-
tions natively, in contrast to a specifically designed
camera system. The mobile phone requires a com-
plex interpretation of noisy data obtained from
available embedded sensors. Thus, such an
approach trades off the quality of acquired infor-
mation for allowing a mobile and minimally obtru-
sive solution (Fig. 4). However, we demonstrated
[12, 23] that spatial settings parameters can be
extracted using mobile phone sensing mechanisms
with sufficiently high precision to indicate social
encounters and provide meaningful information
for further analysis of social interactions. 

SPEECH DETECTION: TRADE-OFFS

The accelerometer-based approach does not
require obtaining sensitive information; on the
other hand, wearing a sensor at the chest level may
be perceived as obtrusive, and consequently it may
stigmatize monitored subjects. However, this issue
occurs even in the case of using a microphone-
based approach, since the microphone needs to be
mounted close to the mouth to achieve higher
accuracy in detecting speech. The obtrusiveness of
the accelerometer, while currently a concern, is
expected to be mitigated, as accelerometers are
increasingly becoming widely adopted in both
research and everyday life. The shape and size of
already accepted commercial accelerometer-based
solutions can also suit speech recognition purposes
(e.g., Fitbit [24], an accelerometer device for track-
ing well-being aspects of individuals’ behavior).
Therefore, relying on an accelerometer as an alter-
native to the use of a microphone can be a com-
promise for preventing privacy concerns in subjects
as well as ethical issues of monitoring in public
while providing a mobile solution for continuous
monitoring of speech activity (Table 2). 

CONCLUSIONS
The work presented in this article has analyzed
aspects related to the trade-offs between the qual-
ity of collected data and enabling natural condi-
tions when monitoring social interactions.
Technology provides ample opportunities for
acquisition and processing of a variety of informa-
tion having the potential to overcome the draw-
backs of survey-based methods; however, the
challenge remains for the researchers as how to
use these new instruments to conduct studies that
approximate real-life situations. In this regard, we
provided an overview of the current sensor-based
methods for monitoring social interactions with a
focus on the trade-offs between the quality of col-
lected data on one hand and level of obtrusive-
ness, respecting subjects’ privacy and spatial
restrictions on the other hand — aspects that
directly affect the natural behavior of subjects.

Figure 4. Trade-offs of our approach.
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Furthermore, this article provided a concept for
monitoring social activity by using non-visual and
non-auditory mobile sources that preserve priva-
cy, do not spatially limit applications, and mini-
mize interference with typical daily activities. 

The drawbacks of the current sensor-based
methods may be the rationale behind self-reports
still being prevalent for collecting social interac-
tion data. Neither the current systems nor the
approach presented in this article are a suitable
replacement for the gold standard surveys for a
number of studies. However, addressing short-
comings of the current sensor-based collecting
methods for monitoring social interactions and
decreasing negative effects of the observation
will lead toward their wider acceptance.
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Table 2. Speech activity detection: accelerometer versus microphone.

Accelerometer Microphone

Privacy concerns Not expected Expected

Accuracy in detecting
speech Up to 93% (in our experiments) Up to 95% [5]

False positives Intense activity, some vehicles, coughing Nearby conversations

Obtrusiveness High (can be mitigated by using already
accepted designs of accelerometers)

Strongly depends on the position (the higher accuracy
required, the closer to the mouth an accelerometer should be
mounted, the more obtrusive approach becomes)

Other advantages Detection of physical activities Omnipresent sensor
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