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Abstract. Stress at work is a significant occupational health concern
nowadays. Thus, researchers are looking to find comprehensive approaches
for improving wellness interventions relevant to stress. Recent studies
have been conducted for inferring stress in labour settings; they model
stress behaviour based on non-obtrusive data obtained from smartphones.
However, if the data for a subject is scarce, a good model cannot be ob-
tained. We propose an approach based on transfer learning for building
a model of a subject with scarce data. It is based on the comparison
of decision trees to select the closest subject for knowledge transfer. We
present an study carried out on 30 employees within two organisations.
The results show that the in the case of identifying a "similar" subject,
the classification accuracy is improved via transfer learning.
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1 Introduction

Over the last four decades there has been rising concern in many countries
about the growth and consequences of work-relevant stress and burnout. Recent
reports show that stress is ranked as a second most common work-related health
problem across the members of the European Union [1]; the same report shows
that individuals with high levels of stress were accompanied by physical and
psychosocial complaints and decreased work-control for the requirements placed
on them.

To date, current approaches to measuring stress rely on self-reported ques-
tionnaires [2], which can be a source of subjectivity. As such, the availability of
rich set of embedded sensors in smartphones is increasingly being used to provide
objective measures of behaviour phenomena.

The objective of this study was to model stress levels from different be-
havioural variables obtained from smartphones when the labelled data for a
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person is scarce. Collected data includes information related to psychological
self-assessments that are obtained from standardised validated questionnaire and
the sensor data from smartphones from 30 employees in two different organisa-
tions. Our approach learns a model for each subject which is useful not only to
predict but to perform comparisons among different subjects in order to obtain
groups of people (clusters) that behave similarly. When a model is built for a new
subject it usually contains insufficient information to have an accurate model.
For this reason we use a transfer learning approach that uses data from the most
similar user in order to improve the model which results in better accuracy.

We performed an experimental analysis using real data focused on predicting
stress based on several smartphone sensors. The study includes 3 aspects: (i)
using semi-supervised learning to complete the models for subjects with missing
data, (ii) clustering the subjects based the similarity of the learned decision trees,
(iii) applying transfer learning to try to improve the model of a new user with
scarce data.

2 Related Work

Smartphones have already been used to detect mental health conditions, as
shown in our previous work [3–6]. However, capturing what is causing an emo-
tion change that is influenced from work-related stressors and detect the onset of
stress can be quite challenging. Current methods have tried to infer stress based
on physiological signals, e.g., heart-rate variability, blood pressure, body temper-
atures and respiration [7]. Furthermore, recent work emphasize the importance
of measuring physiological signals that would help providing short-term feedback
to the users in everyday activities [8]. However, these methods have as drawback
that they need to be carried at all times (and in specific places in body) in order
to allow accurately and continuous monitoring.

StressSense [9] proposes a method for detecting stress based on speech anal-
ysis and the variation of speech articulation. However, in real-life activities (e.g.,
crowded environments) this approach may lead to misinterpretation of speech
and therefore of emotion.

In order to infer relation dynamics of people and behaviour changes in daily
activities, smartphones have been suggested as a promising candidate to obtain
user’s context. Research using smartphones for long-term monitoring [10] have
reported that smartphone sensing can be used to collect many types of contex-
tual data including: physical activities, body postures and locations. In [11], the
authors build a self-tracking system called MoodScope to help its users manage
their mood. The system detects users mood from smartphones usage data (e-
mail, call and SMS logs, application usage, web history and location changes).
The authors reported their initial 66% accuracy of 32 subjects from their daily
mood and improving to 93% after two months of training.

Another relevant work is from Bauer et al. [12] whose work aimed at recog-
nizing stress from 7 students before and after the exam period. The assumption
is that students are likely to be under stress during the exam sessions. They
acquired data from smartphones (location, social proximity through Bluetooth,
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phone calls and SMS logs) and they reported an average accuracy of 53% during
the exam session. In recent work, Bogomolov et al.[13] used call logs, SMS logs,
proximity data, and self-reported surveys about personality traits. The authors
reported detecting daily stress levels with a 72.28% accuracy combining real life
data from different sources. However, measuring stress in uncontrolled settings
poses several difficulties since it requires the efforts of human annotators about
their current perceived stress and other variables relevant to stress.

Building an accurate model to predict stress requires a considerable amount
of labelled data. However, users tend no to answer the questionnaires all the
time, and for a new user we will have few samples. Hence, to overcome these
issues, in this study we use semi-supervised learning methods that use unla-
belled instances and combine the information in the unlabelled data with the
explicit classification information of labelled data for improving the classification
performance [14]. Another related technique used to improving accuracy when
available data is limited is transfer learning [15]. To the best of our knowledge,
no study has applied semi-supervised nor transfer learning methods aiming at
predicting work-related stress.

3 Data Acquisition

For this study, we collected data from 30 healthy employees3 of two organisa-
tions located in the North-eastern part of Italy for a period of 8 weeks, further
described in [3]. All subjects were given a smartphone4 where the application
used for this study collected data continuously as a background application.
The features we extracted for each subject are categorised into two types, the
first group of variables includes information of user’s behaviour that was col-
lected from the smartphone sensors during work hours, these are called objective
variables. The second group contains subjective information obtained from the
self-reported questionnaires, that includes mood and work-relevant stress items.

3.1 Self-reports

The self-reported questionnaire included scales that have demonstrated validity
for inferring stress (the Oldenburg Burnout Inventory [16]). The survey was
administrated via the smartphones and the data obtained from the participants
was obtained three times a day: 9:00am, 2:00pm, and 5:00pm, for a period of 8
weeks.5

In Table 1, we present the overall stress responses for the whole period (8
weeks), where we include only the questionnaires obtained from (2:00pm and

3 16 male and 14 female; married (50%) and not married (50%); age ranged from
26-30(16.67%), 31-40(60%) and above 40(23.33%); 33.33% of participants had an
academic degree, 36.7% had bachelor degree and 30% had high school education.

4 Samsung Galaxy S3 mini 32GB.
5 The scales ranged from 1-to-5 and items selection has been performed considering
the specificity of the Italian work-context in order to ensure their suitability.
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Table 1: Overall number and percentage of Stress-responses
Variable Level Nr.Responses (%) Nr.Subjects
Perceived High 325 (22.18%) 27
Stress Moderate 515 (35.15%) 30

Low 625 (42.66%) 30
Total Responses: 1465 (100.00%) 30

5:00pm). The overall number of responses from both intervals was 1465. In order
to simplify the measurements of the work-related stress, we have classified the
stress-level into three classes: ≤ 2 as “Low-Stress”, 3 as “Moderate-Stress”, and ≥
4 as “High-Stress”. In Table 1 is shown that during the entire monitoring weeks,
27-subjects have perceived “High-Stress” and is about 22.18% of the monitoring
weeks.

Table 2: Number of parameters and features extracted from smartphones
Category Smartphone

Sensors
Attributes (Feature-Extracted)

1. Physical Activity Accelerometer - 3-Axis (Magnitude)
Level - 3-Axis (Variance Sum [17])
2. Location Cellular - CellID and LACID (Number of clusters (DBSCAN) [18])

WiFi - Access Points (Number of clusters (DBSCAN) [18])
Google-Maps - Latitude and Longitude (Number of clusters

(DBSCAN)[18], and distances [19])
3. Social Interaction Microphone - Proximity Interaction

- Pitch [20], Mel-MBSES [21]
4. Social Activeness Phone Calls - Number of Incoming and Outgoing Calls

- Duration of Incoming and Outgoing Calls
- Most common Contact-Calls

SMS - Number of Incoming and Outgoing SMS
- Duration of Incoming and Outgoing SMS
- Most common Contact-SMS

Calendars - Number of Calendar-Events
App usage - Number of used applications (Social, System)

- Duration of used applications (Social, System)

3.2 Objective Data Acquisition and Features Extraction

In Table 2 we provide an overview of the types of smartphone data acquired
for the study. In addition, we provide an overview of each category used in our
study:

– Physical Activity Level: We measured the level of activity using ac-
celerometer data capturing 3-axial linear acceleration continuously at a rate
of 5Hz, which was sufficient to infer physical activity levels. For extract-
ing features, we used the method developed in the framework in [17] and
we measured the magnitude and the variance sum of 26 seconds [not clear]
(n = 128-samples) from accelerometer readings. Each segment was classified
into ”high”, ”low”, and ”none” activity levels.

– Location: Location patterns and the location changes were measured using
the list of WiFi access points (AP) available with their respective BSSID
address, cell tower location and Google location information (latitude, lon-
gitude). We performed clustering for WiFi by means of the received signal
strength (RSS) from each access point (AP). Density-based clustering (DB-
SCAN) [18] was used to obtain a number of different locations (clusters) in
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hourly basis. Similarly, DBSCAN was used to cluster Google location and
cellular tower location.

– Social Interaction: We have used the microphone sensor embedded on
smartphones in order to capture verbal interaction within the employees
when they where involved in conversation in a close proximity. We have
extracted two main audio features (Pitch [20] and Mel-MultiBand Spectral
Entropy Signature (Mel-MBSES) [21]) to perform speech recognition. From
the classifier, we obtain the values (true, false) and we measure the distri-
bution of the interactivity in a daily basis.

– Social Activeness: We have included measurements from the phone us-
age (number and duration of phone calls, number and length of SMS mes-
sages) and the usage of two types of apps: system (Camera, Calendar, Web-
browsing, Mail) and social (WhatsApp, Facebook, Skype) that were installed
on the smartphones.

4 Learning and Comparison of Models

Fig. 1: Decision tree that classifies the level of Stress of one of the subjects in
the study. Ovals represent decision nodes. Rectangles are leaves (terminal

nodes) that give the classification value, in this case they represent low, mid or
high level of stress.

Predicting perceived stress of the user can be modelled as a classification
problem. We used decision trees [22] to model subject’s stress since this repre-
sentation can be easily understood by a human, and this could help to have a
better understanding of what causes stress. Also, using this representation we
can compare the models for the different subjects, which is important for trans-
fer learning. Our approach is to build a decision tree (can be seen as a model) to
predict stress for each subject of the study. To learn decision trees we used the
C4.5 algorithm using as attributes the objective variables presented in Section
3.2. The class to predict is the self-reported stress level (Section 3.1) (Low, Mid,
High). In Fig. 1 we depict an example of a decision tree classifying the stress
level of a subject.

Our first objective is to analyse how subjects are related to each other in
terms of how similar are their models. To compare the trees, the dissimilarity
measure presented in [23] is used. This measure combines the structure (the
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attributes of the nodes) and predictive (the predicted classes) similarities in a
single value. The dissimilarity measure among two trees Ti and Tj is defined as:6

d(Ti, Tj) =

H∑
h=1

αh(1− sh)
mh0

n
+

K∑
k=1

αk(1− sk)
m0k

n
(1)

where the mxy values measure the predictive similarity and the αx and sx values
measure the structural similarity. This measure can be normalized to be in the
range [0− 1], where 0 represents that the trees are very similar and 1 that they
are totally dissimilar.

Fig. 2: Dendrogram obtained by computing similarities between models of each
subject (using only 18 subjects). Three major clusters can be noted, colour

boxes correspond to average stress for different subjects.

4.1 Initial dataset

From the set of 30 subjects, we initially removed those that had a significant
number of missing values (mainly in the questionnaires for self-evaluation of
their stress level). Thus, having a remaining set of 18 subjects.

A decision tree was learned for each subject and using the distance in Equa-
tion (1) we compared all pairs of models to obtain a similarity matrix. From that
matrix we performed hierarchical clustering using the unweighted pair group
method with arithmetic mean algorithm which yields the dendrogram depicted
in Fig. 2, where a box with a colour indicates the average self-reported stress for
that subject. From the figure we can observe 3 clusters with 7, 6 and 4 subjects.
The largest cluster (with 7 subjects) roughly corresponds to subjects which re-
ported low levels of stress in average (denoted by the blue boxes). The second

6 Let 1, . . . , H as the leaves of Ti, and 1, . . . ,K as the leaves of Tj , mhk is the number
of instances which belong to both the hth leaf of Ti and to the kth leaf of Tj .
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major cluster (with 6 subjects) corresponds to subjects who reported a mid level
of stress (grey boxes). The third cluster with only 4 subjects shows subjects with
high and mid level of stress.

Since the initial data had a large portion of missing values (20.03% of overall
dataset), semi-supervised learning was used to fill those. In this study, we use a
single classifier method called self-training [14] to classify the unlabelled data.
These new data is added to the training set, the classifier is re-trained and the
procedure repeated.

Fig. 3: Dendrogram obtained by computing similarities between models of each
subject (for the 30 subjects) after using semi-supervised learning to fill missing

data. Colour boxes correspond to average stress for each subject.

After applying the semi-supervised learning phase, there is enough data to
compute comparisons with the 30 users of the study. A dendrogram of the simi-
larity of all users is depicted in Fig. 3. In this case we can observe 4 main clusters.
One cluster (bottom, 9 subjects) is formed by those subjects whose stress level
was consistently the same for the entire study. Note, that in this case subjects
were clustered by the rule of behaviour (always the same stress level) not by the
prediction itself. Another cluster is formed by subjects that on average showed
low and mid level of stress (6 subjects). A third cluster (with 4 subjects) contains
subjects with high and mid levels of stress. The largest cluster is formed with
10 subjects which do not show a consistent level of stress.

4.2 Similarity matrices

The process described in previous section was used to obtain a similarity matrix,
depicted in Fig. 4 (a), where the more similar a subject is to another the more
darker that square is (subjects are ordered by clusters). Then we decided to
remove 50% of the data from all subjects (this will be useful for our transfer
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learning approach in the next section). The similarity matrix using this reduced
data is depicted Fig. 4 (b), and in Fig. 4 (c) we depict the matrix resulting from
the difference of (a) and (b) where a grey value means no difference.

In summary, we have three similarity matrices with different quantity of
data. For each matrix we computed the average values, the initial data with 18
subjects showed a more disperse set of distances with an average of 0.65± 0.18
(higher value, means subjects are more different to each other). After the semi-
supervised algorithm was applied the average distance was 0.55±0.16 even when
number of subjects increased (30 subjects). Finally, when the data was reduced
the average distance decreased to 0.49±0.15, which may not happen in all cases
(note that removed data was randomly selected).

(a) (b) (c)

Fig. 4: Similarity matrices of 30 users using (a) all data (after semi-supervised
learning) and (b) with 50% of instances removed –darker cells indicate high

similarity. (c) depicts the difference between (a) and (b); a white cell indicates
a + difference, black a − negative difference, and grey no difference.

4.3 Missing data and semi-supervised learning

Table 3: Percentage of entries whose value increased more than ε = 0.1, . . . , 0.5
from matrix original to matrix modified.
Data ∆(Original,Modified) > ε

Original Modified ε =0.1 ε = 0.2 ε = 0.3 ε = 0.4 ε = 0.5
Initial Semi-supervised added data 0.39 0.22 0.14 0.07 0.05
Semi-supervised Removed random 50% data 0.55 0.29 0.19 0.13 0.11

Now we analyse the effect of adding/removing data in terms of the compar-
isons among models, i.e. similarity matrices. Thus, we computed the absolute
difference of each entry between an original and a modified matrix:

∆i, j(original,modified) = |eoriginali,j − emodified
i,j | (2)

Table 3 shows the percentage of entries where ∆i,j > ε with ε = 0.1, . . . , 0.5
between two matrices. After applying the semi-supervised approach, 39% of the
entries in the similarity matrix changed more than 0.1, which is a small change
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in similarity for a large portion of entries. In contrast only 5% of entries changed
more than 0.5. Results show that after the semi-supervised approach the similar-
ity matrices were slightly altered with an average value of 0.12± 0.14, meaning
there were no drastic changes in similarities. When we reduced the data by 50%
the difference between matrices increased to 0.19± 0.20 which is expected since
the data was reduced significantly. These results are important to show that
the similarity used is robust to even when there is missing values. This will be
useful in the next section since we start with the reduced data but using transfer
learning we can improve their accuracy.

5 Transfer Learning
Our approach assumes a set of previously learned models along with their re-
spective data. Then, a new subject appears; however, its associated data is scarce
which results in having a model with poor predictive accuracy. Information from
the other subjects could be useful to improve the model. First we learn a model
ti for the new subject i and compare with the rest T using equation 1. The model
k = argmintj∈T d(ti, tj) which is the most similar to ti is selected and its data is
transferred to i. A new model is learned using the original and the transferred
data.

We applied the described approach on the data which has a percentage of
data removed. The average distance to the nearest subject is 0.28 and there are
18 subjects that have only one nearest subject. These subjects were selected for
the proposed transfer learning approach.

(a) (b) (c) (d)

Fig. 5: Learned models of different subjects: Subj30 (a) and its most similar
Subj17 (b). Subj29 (c) and its most similar model Subj05 (d).

We compare the results using the reduced data with and without the transfer
learning approach to classify the same data. Accuracy is obtained by learning
a classifier using either: the reduced data or the reduced plus transferred data,
then testing that model on the data without removed instances. The results
showed that using transfer did not improve the accuracy for all subjects. This
happens because there is information we are ignoring of when transfer will be
more useful: the distance to the nearest subject. The idea is to use transfer when
the distance is small (when the model is close to another ) and not when distance
increases. For example, in Fig. 5 (a) and (b) we depict trees that of subjects 30
and 17 which have a d = 0.36. In this case trees are similar in their decision
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Table 4: Classification accuracy, ∆ transfer shows the difference between no
transfer and transfer columns. All data shows the accuracy using all original
data (upper bound). The number of initial and transferred instances is shown.
The top part of the table shows the results when the distance to the closest

subject is small (< 0.37), while the bottom when it is large (> 0.37).
Subject No Transfer Transfer All data ∆ Transfer Initial I. Transf. I. d(nearest)
Subj28 57.35 63.23 77.94 5.88 35 26 0.18
Subj10 44.89 51.02 71.42 6.13 26 31 0.27
Subj12 55.93 54.23 62.71 -1.69 18 31 0.32
Subj18 70.27 62.16 75.67 -8.10 31 18 0.32
Subj24 67.14 67.14 71.42 0.00 36 31 0.36
Subj05 70.68 65.51 86.20 -5.17 29 37 0.36
Subj30 42.85 53.57 78.57 10.71 37 29 0.36
Subj09 57.69 73.07 76.92 15.38 18 35 0.36
Average 58.35 61.24 75.10 2.89 28.75 29.75 0.31
Subj25 85.71 83.67 89.79 -2.04 24 31 0.39
Subj04 81.25 71.88 84.37 -9.38 32 31 0.42
Subj08 57.41 50.00 55.55 -7.41 27 35 0.46
Subj16 61.11 62.96 74.07 1.85 30 29 0.48
Subj14 51.56 48.44 82.81 -3.13 32 31 0.49
Subj23 53.33 50.00 58.33 -3.33 32 35 0.53
Subj19 60.00 53.33 90.00 -6.67 33 26 0.54
Subj01 72.86 61.43 78.57 -11.43 41 32 0.58
Subj29 62.07 44.83 79.31 -17.24 29 33 0.60
Subj11 65.45 74.55 72.72 9.09 30 29 0.62
Average 65.08 60.11 76.55 -4.97 31 31.2 0.51

nodes. In contrast we show models of subjects 29 and 5 (in Fig. 5 (c) and (d))
which have d = 0.60, here these trees show different decision nodes.

Table 5: Classification accuracies with different threshold for applying transfer
learning and percentage of instances with transfer approach.
Transfer threshold % Transferred Instances Average Accuracy
0.00 0.00 62.09
0.30 0.11 62.76
0.37 0.44 63.37
0.50 0.72 62.26
1.00 1.00 60.61

Using transfer only when distance was less than a transfer threshold (in this
case < 0.37) improves the accuracy from 58.35 to 61.24 (Table 4), in contrast
when d ≥ 0.37 is better not use transfer learning since the models are far from
each other and this causes a negative transfer. We performed experiments varying
the threshold with values 0.0, 0.3, 0.37, 0.5, 1.0, average accuracy for all subjects
is shown in Table 5. From the results we can see that the trivial approaches of
not using transfer or using transfer on all subjects do not obtain the best results.
However, selecting the appropriate threshold of transfer increases the accuracy.
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Finally, we also performed experiments removing only 20% of the data and
repeated the transfer learning process. However, the transfer learning approach
did not improve the accuracy. Preliminary analysis show that transferring all
the data from the closest user is not always the best choice, a selection of the
data must be applied and we leave that as future work.

6 Conclusion
Using smartphones to predict the affective state of a person, such as stress, re-
quires a considerable amount of data to build a user-specific model. However,
having enough labelled data is difficult. In this paper we have proposed an ap-
proach that combines semi-supervised and transfer learning to deal with this
issue. An experimental evaluation was conducted with 30 subjects to predict
stress at work. The results show that transfer from similar subjects can improve
the classification accuracy, but using transfer from dissimilar persons could be
detrimental. Future research ideas are to select instances of data to transfer from
several similar models.
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