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A B S T R A C T

Occupational stress has a significant adverse effect on workers’ well-being, productivity, and
performance and is becoming a major concern for both individual companies and the overall
economy. To reduce negative consequences, early detection of stress is a key factor. In
response several stress prediction methods have been proposed, whose primary aim is to
analyse physiological and behavioural data. However, evidence suggests that solutions based on
physiological and behavioural data alone might be challenging when implemented in real-world
settings. These solutions are sensitive to data problems arising from losses in signal quality or
alterations in body responses, which are common in everyday activities. The contagious nature
of stress and its sensitivity to the surroundings can be used to improve these methods. In this
study, we sought to investigate automatic stress prediction using both surrounding stress data,
which we define as close colleagues’ stress levels and the stress level history of the individuals.
We introduce a real-life, unconstrained study conducted with 30 workers monitored over 8
weeks. Furthermore, we propose a method to investigate the effect of stress levels of close
colleagues on the prediction of an individual’s stress levels. Our method is also validated on an
external, independent dataset. Our results show that surrounding stress can be used to improve
stress prediction in the workplace, where we achieve 80% of F-score in predicting individuals’
stress levels from the surrounding stress data in a multiclass stress classification.

. Introduction

Workplace changes have brought about new challenges to organisations and employees, leading to increasingly competitive and
tressful working environments (Rigó et al., 2021).

Particularly in Europe, a poll found that 51% of European employees consider stress a common problem in their workplaces (for
afety & at Work, 2013). Also, the European Foundation for the Improvement of Living and Working Conditions stated that 22% of
uropeans suffer from stress and fatigue (Parent-Thirion et al., 2007), finding that 40% of workers think that stress is not effectively
ddressed in their workplace (Parent-Thirion et al., 2012). Similar results can be observed in the United States, where reports say
hat around the 40% of workers see their job as quite a bit or extremely stressful, and 29% of them recognise feeling very or
ighly stressed at work (Gallup, 2021). According to the American Psychological Association (Association, 2019), 75% of adults
eported experiencing moderate to high levels of stress. Reports available from other countries such as China (Le et al., 2020) or
ustralia (Ribeiro Santiago et al., 2020) illustrate the impact of occupational stress around the world.

The high impact that workplace stress has on workers’ motivation, job performance, well-being, and productivity has made
t one of the main challenges for organisations. Research has demonstrated that employees with high levels of stress have lower
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performance and are more likely to suffer from severe physical and mental health problems (Moreno Fortes et al., 2020). This
translates into a significant strain for organisations through direct and indirect costs such as increased absences, lower productivity,
high turnover rates, decreased work engagement, increased staffing, and health benefit costs (Foy et al., 2019).

Considering these high impacts and the associated costs of workplace stress to individuals and society, managing stress has
ecome a high priority health concern for populations around the world (Greene et al., 2016). However, even if 79% of managers
re concerned about stress in their organisations, less than 30% of organisations have procedures for dealing with workplace
tress (Muñoz & Iglesias, 2021; Parent-Thirion et al., 2012). Early detection and monitoring of stress problems can significantly
mprove the efficiency of interventions, decrease associated costs, and prevent stress from becoming chronic (Can, Chalabianloo
t al., 2019). Nevertheless, the social stigma associated with mental illness (Kim et al., 2021) magnifies the challenge of its early
etection.

Traditional methods for early stress detection mainly consisted of self-reports in response to standardised questionnaires (Andreou
t al., 2011), such as Perceived Stress Scale (Chan & La Greca, 2013) and Depression Anxiety and Stress Scale (Osman et al.,
012). In recent years, the huge strides in affective computing have opened many possibilities for early stress detection. Affective
omputing makes use of technological means to recognise the affective state of a person (Picard, 2000). A significant amount of
esearch has recently been conducted on automatic stress measurement systems, which use smart devices and advanced affective
omputing algorithms to detect stress. The two main directions for stress detection are the analysis of physiological data (e.g., skin
onductance, pupil diameter, heart rate) and behavioural data (e.g., mobile phone usage, physical activity, facial expressions,
eystroke dynamics) (Alberdi et al., 2016) or a combination thereof.

Whereas these solutions have shown promising results in stress prediction, their implementation in a real-life scenario presents
dditional challenges. For instance, everyday activities can amend body responses or produce noise that affects the quality of
easurements (Han et al., 2020). This could lead to sensor malfunction or data problems such as data occlusion or corruption,

hus hampering the task of stress recognition. Also, to enable automatic stress detection, a large number of sensors of different
inds and sizes are required that must be conveniently positioned for the users (Maxhuni et al., 2021). This often entails high costs
nd complexity.

To benefit from the contagious nature of stress and its proneness to be influenced by surroundings (Dimitroff et al., 2017) can help
o address this challenge. Our article aims at exploiting this approach by investigating the use of surrounding stress data to predict
orkers’ stress levels. We seek to reduce the complexity of automatic stress detection by using past stress levels from individuals
nd their closest colleagues to predict current or future levels. Therefore, we focus on the following research questions (RQ):

• RQ1: Can the surrounding stress information be used to predict the stress levels of an individual?
• RQ2: How do the individual’s stress history and the stress levels of their colleagues impact the predictive performance?
• RQ3: Which features yield the best performance when predicting an individual’s stress level from surrounding stress data?

Motivated by these questions, we propose a machine learning method able to predict workers’ stress from their previous stress
evels and the levels of their closest colleagues. In order to validate our model, we gathered data containing psychological self-
ssessment related information (acquired from standardised, validated questionnaires) and unobtrusive sensor information collected
rom smartphones during a real-life experiment conducted with 30 employees over a monitoring period of 8 weeks. Additionally,
e externally validate our method using an independent dataset, the StudentLife (Wang et al., 2014), which is a public dataset that

ontains real-life behavioural data from students during an entire university course.
The experiments show that it is possible to use surrounding stress data for predicting stress, and the proposed method achieves

n F-score of 81% to classify stress into three levels: low, medium, and high. Furthermore, we carried out a statistical study on
he results of our method to analyse the performance of different classifiers and models. This is the first study on supervised stress
ecognition using surrounding stress data acquired from previous data from workers and their close colleagues to the best of our
nowledge. Our findings may have important implications for enhancing stress recognition systems. The proposed approach could
e combined with those exploited in other works (such as solutions based on physiological and behavioural data). This could help
o reduce the number of sensors and data required and to improve the effectiveness of stress detection methods in the presence of
carce data.

The rest of the paper is organised as follows. An overview of stress theories and stress detection methods is presented in Section 2.
n Section 3, the proposed stress prediction models are described. Following, Section 4 provides information on the experiments
arried out to collect our dataset and gives a detailed description of both datasets. Later, in Section 5 we depict the experimental
etup that we use to evaluate the proposed models, and in Section 6 we present the results obtained. We discuss our findings and
raw the main conclusions in Section 7. Finally, Section 8 concludes with the main findings of the investigation and the outline of
ossible future directions of this work.

. Literature review

The importance of stress in personal and professional life has increased interest and research on its nature and prevention.
owever, due to the different contexts in which the notion of stress is used and its subjectivity, none of the stress definitions has
een universally recognised (O’Connor et al., 2021). One of the first and more generic definitions of stress was proposed by Hans
elye, who argued that stress is the generic reaction of the body to any demand (Selye, 1956). In recent years, many extended
nd more specific stress definitions have been proposed (Burman & Goswami, 2018). Kim and Diamond (2002) propose a three-
2

omponent definition of stress: it requires heightened excitability or arousal, an experience that must be perceived as aversive, and
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lack of control. In accordance with the work proposed by Cox and Griffiths (1995) and Cox and Griffiths (2015), the definition
of stress can be approached from three different points of view: physiological, psychological, and engineering. Regarding the
physiological approach, stress refers to the changes that occur in a human under pressure. The psychological one states that stress is
the dynamic process arising from the interaction between an individual and the environment. Lastly, from an engineering point of
view, stress can be considered a stimulus of the environment in the form of a level of demand. Therefore, stress can be non-formally
defined as the reaction of the human body to any demanding or hazardous situation (Can, Arnrich et al., 2019). Focusing on the
workplace environment, work-related stress can be considered as a specific form of stress that has been provoked or exacerbated by
specific aspects of work, work environments, or workplaces (Mishra et al., 2011). These aspects can be related to work conditions,
organisational role, career development, work relationships, or environment and organisational structure (Universari & Harsono,
2021).

The context-dependence and subjectivity of stress have also led to a wide variety of stress theories (Dewe et al., 2012). One
f the earlier and more transcendental theories is the Person–Environment (P–E) fit theory, which has been the source for other
pproaches to stress and well-being (French et al., 1982). This theory, founded on the work of Lewin (1936) and Murray (1938),
rgues that stress arises from the fit or congruence between the person and the environment. According to this theory, stress is
lack of harmonisation between a person’s abilities and the claims placed on them. Another important theory in this field is the
ransactional Model of Stress, proposed by Lazarus and Holroyd in 1982 (Holroyd & Lazarus, 1982). According to this theory, stress
rises as a relationship between the person and the environment. The theory argues that the person appraises the environment as
ough or demanding, therefore threatening well-being (Glanz et al., 2008).

These models have been the basis for understanding stress and have helped develop prevention, detection, and regulation
ethods. Over the last few years, much progress has been made in the research of automatic stress measurement systems to enable

ts early detection and avoid its negative health and economic-related consequences (Alberdi et al., 2018). Traditional approaches
o stress detection consist of psychological evaluation through self-report questionnaires or psychologist interviews (Hayashi et al.,
012). To date, research in the field has evolved in two main directions: the analysis of physiological data and the analysis of
ehavioural data (Alberdi et al., 2016). Physiological data can provide objective information on the stress levels of an individual,
nd a wide variety of physiological signals have been studied (Singh et al., 2013). Between them, Electro-Dermal Activity
EDA) (Pakarinen et al., 2019), Heart Rate Variability (Castaldo et al., 2019), and Electroencephalogram (EEG) (Jebelli, Khalili
t al., 2019) have yielded the most successful results. EDA was used by Pakarinen et al. (2019), showing promising results for
ong-term assessment of self-perceived stress and arousal during work. The use of HRV was analysed by Castaldo et al. (2019),
ho demonstrated the reliability and accuracy of HRV features to automatically detect mental stress. Jebelli, Khalili et al. (2019)
roposed an EEG-based stress recognition framework by applying different supervised learning algorithms to identify the pattern
f workers’ brain waves while exposed to different stressors. Some other examples of signals include blood pressure (BP) (Gordon
Mendes, 2021), respiration (Sadat-Mohammadi et al., 2021), blood volume pulse (BVP) (Ladakis & Chouvarda, 2021), eye gaze

nd blinking (Wang et al., 2019), or pupil diameter (PD) (Pedrotti et al., 2014). Finally, some works propose the use of wearable
ensors to predict stress from a combination of several signals (Jebelli, Choi et al., 2019).

On the other hand, analysis of behavioural data exploits variations in individuals’ behaviour to predict stress (Sharma & Gedeon,
012). These methods comprise the analysis of computer patterns such as mouse or keystroke dynamics (Dacunhasilva et al., 2021),
ext (Muñoz & Iglesias, 2022), activity (Giakoumis et al., 2012), facial expressions (Zhang et al., 2019), speech (Tomba et al.,
018), or the use of mobile phones (Ferdous et al., 2015). In the current literature, there are extensive reviews on the usage of these
echniques to detect stress (Alberdi et al., 2016; Can, Arnrich et al., 2019; Greene et al., 2016).

Whereas the reliability of these methods for detecting stress has been proven, their implementation in real scenarios poses
dditional challenges. For instance, everyday activities can deteriorate the signal quality or alter body responses (Han et al., 2020),
hus hindering stress recognition. Therefore, errors due to incorrect placement, movements, or detached equipment are common in
aily life and lead to corrupted data (Can, Arnrich et al., 2019). Also, some solutions require massive data or the installation of
btrusive and expensive sensors (Novais & Carneiro, 2016). This diminishes the feasibility of these solutions in real-world settings.
ur approach aims at addressing this challenge by introducing a method that uses the surrounding stress data to predict stress. We
ill explore how the use of stress-related data coming from past measures and close colleagues can help enhance the performance
f stress recognition in an unobtrusive and low-cost way. This may help decrease the number of sensors and data needed, given
hat the data measured in specific individuals can be used for predicting the stress level of other individuals. Furthermore, it can
lso be used to predict the stress level of an individual at a specific point in time where data corruption or loss has occurred.

. Stress prediction models

This work introduces a model that exploits surrounding stress information, that is, the stress levels of physically close colleagues
nd the individual’s stress history, to predict current stress levels. For this purpose, a machine learning system is presented. Fig. 1
hows a representation of the proposed model. As can be seen, the surrounding stress information is processed by two different
rocessing modules. These modules are responsible for receiving as input the previous stress levels from the subject and the closest
olleagues, generating a feature vector representing this information, and producing this vector as output. The feature vectors are
hen concatenated and fed to a machine learning classifier, which yields a prediction based on the given information. The proposed
odels have been validated using the two datasets described in Section 4.

In the literature, affective states such as stress (Dimitroff et al., 2017) or emotions (Petitta et al., 2021) emanated from the
3

ndividual have been discussed to influence the mood of close individuals. Furthermore, data related to past emotions can play a
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Fig. 1. General architecture representation of the proposed method.

role in future moods (Hollis et al., 2017). Nonetheless, to the best of our knowledge, the effect of surrounding stress has not been
utterly analysed in the domain of stress level prediction. Therefore, this work proposes the use of close individuals’ stress data to
extract surrounding stress-related features. With this in mind, our objective is to analyse the extent to which this type of information
is valuable for stress prediction.

We consider the surrounding stress data to be a compound of two factors: the personal and social components. The former refers
to the past stress levels of the individual in question. The latter refers to the stress levels measured for the closest colleagues of
this individual. We define closest colleagues as those in physical proximity of the individual, as inferred from smartphone sensor
data, including WiFi, cell, and GPS location. Consider an employee whose personal stress levels during a certain period 𝑇 are the
following:

𝐸(𝑇 ) = [𝑒𝑡−𝑤,… , 𝑒𝑡] (1)

where 𝑒𝑡 is a number that expresses the stress level of the employee at the time 𝑡, on a scale of 1 to 3, thus 𝑒𝑡 ∈ [1, 2, 3]; and 𝑤 is
the window size, that is, the number of previous stress measures considered. Considering that we want to predict the stress level of
the individual at the moment 𝑡, that is, 𝑒𝑡, we can define the personal component as:

𝑃 (𝑇 ) = [𝑝𝑡−𝑤,… , 𝑝𝑡−1] (2)

In the personal component of the employee, we are predicting the level of stress 𝑝𝑡. Thus this measure is excluded from the
input.

The social component is composed of the stress levels of colleagues in close physical proximity. Thus if we define the stress levels
of a certain colleague 𝑖 as 𝐶 𝑖(𝑇 ) = [𝑐𝑖𝑡−𝑤,… , 𝑐𝑖𝑡 ], being 𝑐𝑖𝑡 ∈ [1, 2, 3], the social stress component is defined as the concatenation of all
vectors:

𝑆(𝑇 ) =
𝑛

⨁

𝑖=1
𝐶 𝑖 (3)

where 𝑛 is the total number of close colleagues to consider (𝑛 ∈ N). Based on these components, we propose different ways to combine
the information in order to improve the performance of the stress prediction. In this way, three different models are proposed: (i)
using only sequential data (𝑀𝑆𝐸𝑄); (ii) using only statistical features (𝑀𝑆𝐹 ); and (iii) using a feature ensemble of sequential and
statistical data (𝑀𝐹𝐸).

3.1. Sequential data model (𝑀𝑆𝐸𝑄)

The first model aims to predict stress using only sequential data of the surrounding stress. Sequential data consist of an
individual’s stress levels ordered in a timely manner for a certain period. Given the surrounding stress data components defined
above, we can define the sequential feature vectors as:

𝑃𝑆𝐸𝑄(𝑇 ) = [𝑝𝑡−𝑤,… , 𝑝𝑡−1] (4)

𝑆𝑆𝐸𝑄(𝑇 ) = [𝑐𝑖𝑡−𝑤,… , 𝑐𝑛𝑡−𝑤,… , 𝑐𝑖𝑡 ,… , 𝑐𝑛𝑡 ] (5)

We can see that these vectors contain the last 𝑤 levels measured for a specific employee and the top-n closest colleagues. Note
that while the measure at the moment 𝑡 is not included in the personal component (since it is the value to be predicted), it is
included in the social component of colleagues. This approach evaluates the prediction of an individual’s current stress level given
the current stress levels of colleagues.
4
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Table 1
Statistical features extracted from the data.

Feature Formula Description

avg 𝐸𝑎𝑣𝑔 = 1
𝑤

∑𝑡−𝑤
𝑖=𝑡 𝑒𝑖 Average of all levels

std 𝐸𝑠𝑡𝑑 =
√

1
𝑤−1

∑𝑡−𝑤
𝑖=𝑡 (𝑒𝑖 − 𝑒)2 Standard deviation of all levels

max 𝐸𝑚𝑎𝑥 = max𝐸(𝑇 ) Maximum value between levels
min 𝐸𝑚𝑖𝑛 = min𝐸(𝑇 ) Minimum value between levels
last 𝐸𝑙𝑎𝑠𝑡 = 𝑒𝑡 Last value of all levels
𝛥 𝐸𝛥 = 𝑒𝑡 − 𝑒𝑡−𝑤 Total level increment
𝛿 𝐸𝛿 = 𝑒𝑡 − 𝑒𝑡−1 Last level increment

3.2. Statistical features model (𝑀𝑆𝐹 )

This second model aims to exploit several statistical features contained in the surrounding stress data for the purpose of improving
he classification performance. The extracted features are shown in Table 1.

Note that all formulas are generalised for a generic employee, so the last measure of the period (𝑒𝑡) is included. However, when
alculating these features for the personal component, the last measure of the period is not included, as it is the measure to be
redicted. Given this, we can compute the statistical feature vector of an individual, that is, the personal component as:

𝑃𝑆𝐹 = [𝑃𝑚𝑒𝑎𝑛, 𝑃𝑠𝑡𝑑 , 𝑃𝑚𝑎𝑥, 𝑃𝑚𝑖𝑛, 𝑃𝑙𝑎𝑠𝑡, 𝑃𝛥, 𝑃𝛿] (6)

In the personal component, all these features are extracted at the subject level (taking into account only one individual). However,
or the social component, we can compute additional features related to the group of close colleagues, that is, statistical features
elated to the measures of all the colleagues considered. In this way, we can define the social component of the statistical features
odel as the concatenation of the features related to the group with the statistical features vectors of all colleagues:

𝑆𝑆𝐹 = 𝐺𝑆𝐹 ⊕
𝑛

⨁

𝑖=0
𝐶 𝑖
𝑆𝐹 (7)

where 𝐶 𝑖
𝑆𝐹 is the statistical feature vector of the colleague 𝑖, 𝑛 is the number of close colleagues considered, and 𝐺𝑆𝐹 is the feature

vector computed from the data of all the colleagues considered. This vector contains the features described in Table 1 computed at
the group level rather than at the individual level. Additionally, the average, standard deviation, maximum, and minimum values
of all colleagues have been calculated for the increments and last values.

3.3. Features ensemble model (𝑀𝐹𝐸)

The primary purpose of this model is to merge the two kinds of features into a unified feature set and hence to benefit from
the combination of the different information types provided by these features. In this manner, a machine learning classifier may
achieve better performance scores learning from the merged set than learning only from a feature subset. The surrounding stress
components in this model are computed as the concatenation of the feature vectors of the previous models:

𝑃𝐹𝐸 = 𝑃𝑆𝐸𝑄 ⊕ 𝑃𝑆𝐹 (8)

𝑆𝐹𝐸 = 𝑆𝑆𝐸𝑄 ⊕𝑆𝑆𝐹 (9)

All proposed models have been validated using data from two datasets: StudentLife and our own collected dataset described in
Section 4. Finally, to explore the influence of the personal and social stress components of each model, this work proposes three
different ways to compute the surrounding stress data: (i) using only personal data; (ii) using only social data; and (iii) using both
personal and social data. The evaluation of each model, along with the different components of the surrounding stress, is presented
in Section 5.

4. Datasets

4.1. Our dataset

An experiment was conducted in order to collect data from a group of 30 employees from two different organisations for 8
weeks. Participants were voluntarily recruited, and the Institutional Ethics Review Board approved all experimental procedures. A
presentation was made that described the objectives and methods of the study, with the participation of nearly double the final
participants. Later, interested participants received a smartphone with our data collection app installed and configured. The data
collection framework was based on a server-client architecture built around the Samsung Galaxy S3 Mini 32 GB smartphone. No
additional clinical screening has been performed, except the annual health screening performed in each organisation. The main
reason some employees refused to participate in the study was that they did not want to use another smartphone. The 30 participants
5

selected for the study were workers from two different companies in Trento, Italy. Table 2 offers a summary of the demographic
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Table 2
Demographics of the participants in the performed study.

Variable Characteristics No. (%)

Gender Male 18 (60%)
Female 12 (40%)

Education
High-school 9 (30%)
Bachelor degree 11 (36.67%)
Graduate degree 10 (33.33%)

Age

26–30 5 (16.67%)
31–40 18 (60%)
>40 7 (23.33%)
Mean 37.46

Marital status Married 15 (50%)
Never married 15 (50%)

No. of children
None 17 (56.67%)
1–2 10 (33.33%)
3–4 3 (10%)

characteristics of the employees. It can be observed that there is a pretty balanced mix of age, gender, marital status, education
level, and number of children among the participants.

During the study, the workers used the provided smartphone daily as their phone. No restrictions on the handling of their
martphone were given to the participants to guarantee the most realistic conditions possible for our analysis. The application
esponsible for collecting data was automatically started at 9 am on business days (Monday–Friday) without any interaction from
he user and then continued to run uninterruptedly in the background. Two types of variables were extracted from this experiment:
bjective variables (employees’ behaviour captured by sensors during work hours); and subjective variables (responses obtained from
uestionnaires). With the purpose of collecting users’ mood and stress levels, the app automatically prompted users to complete a
uestionnaire at three different times of the day: at 9 am (at the beginning of the working day), at 2 pm (after lunch break) and 5 pm
at the end of the working day). The user had the option of answering the questions at these times or postponing the questionnaire
o another moment. The questionnaires contained 14 questions related to stress, sleep quality, work abandonment, energy levels,
nd the affect of mood states. The questions had an estimated response time of one minute and were founded on two validated
uestionnaires: Profile of Mood States (POMS) (Shacham, 1983) and Oldenburg Burnout Inventory (Demerouti & Bakker, 2008).

Each question had five possible answers corresponding to five stress-related aspects on a scale ranging from 1 (definitely agree) to
(definitely disagree). The first part of the questionnaire is intended to collect information about the occupational health outcomes

f the participants: (i) job-induced stress, (ii) job control, (iii) job demand, and (iv) energy perceived during working days. The
econd part consists of different questions to measure mood: feelings of sadness, friendliness, anxiety, anger, cheerfulness, time
ressure, job-related tension, and sleep quality.

The number of completed questionnaires was 1455, which denotes a response rate of 79.97%. Some of the most relevant insights
rawn from the questionnaire responses are: throughout the entire monitoring period, the employees perceived a moderate (35.15%)
o high (22.18%) stress level; at some time, almost all of them (29 out of 30) reported that their job tasks and responsibilities were
ighly demanding (50.58%); at some point, 19 workers felt High-Tense, 18 employees felt High-Anxious, and 11 of the respondents
eported High-Angry (5.67%); and finally, 24 respondents reported Poor Sleep Quality as a reaction to stress.

Furthermore, the locations of the subjects were analysed, focusing on understanding the frequent changes in location throughout
he workday. In this way, the app retrieved: (i) the record of WiFi networks available with their corresponding Basic Service Set
dentifier (BSSID) address, (ii) cell tower locations, and (iii) Google Maps locations information (latitude, longitude). Google Maps
ocations where the subjects stayed for more than 15 min were clustered with a maximum diameter of 300 m (using the Haversine
istance equation (Robusto, 1957)). Also, the number of locations on each day was computed. For cell tower information and WiFi
etworks, location information was clustered on an hourly basis. Thus, the locations were compared every hour, increasing the
ount when different clusters appeared with respect to the previous hour. In this work, we used only location-related data along
ith self-reported questionnaire items related to stress, as our objective is to explore the influence of surrounding stress among

olleagues who work close to each other.

.2. StudentLife dataset

In addition to the dataset presented in Section 4.1, another dataset has been used to explore the performance of the presented
ethod in a different population. The StudentLife dataset is a broad longitudinal dataset containing passive and automatic sensing
ata from smartphones of 48 Dartmouth College students for 10 weeks, with the purpose of assessing their mental health (Wang
t al., 2014). It contains more than 53 GB of continuous data, 32 000 self-reports, and pre- and post-surveys. Amid the 48 students
ho completed the study, 30 were undergraduates, and 18 were graduate students. Regarding gender, 38 participants were male,
nd 10 participants were female.

Participants were asked to answer different questions related to stress, mood, or current events during the collection phase as
6

hey used their smartphones. On average, 3–13 questions were administered per day. The students responded to several scheduled
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questionnaires, including stress, mood, social interaction, duration of sleep, physical activity, and a short personality item. A total
of 35 295 completed questionnaires were collected.

Besides, the locations of all access points on the network and WiFi scan logs were collected as part of the study. This information
ncludes all encountered BSSIDs and their signal strength values that were used to determine the location of a student. Among all the
ata provided in the dataset, in this work, we used only location-related data along with self-reported questionnaire items related to
tress. In this sense, we consider the physical proximity of students as surrounding stress and explore its effect on stress prediction.

.3. Data preprocessing

The own collected and StudentLife datasets provide a large set of diverse passively detected data. However, for our work, only
ome of these data are required. Therefore, only the stress levels obtained from the questionnaires and location-related data have
een selected among all data provided.

Once the required data are selected, a homogenisation of the stress levels extracted from the questionnaires is performed. Given
he different nature of the surveys used in each experiment, the stress scales are different in the two datasets. For example, while
n our dataset, a stress value of 5 refers to the highest stress level, in the StudentLife dataset, it refers to the lowest stress level. To
olve this issue, the stress levels obtained from the StudentLife dataset have been converted to the same scale used in our dataset.
urthermore, as described above, the responses to the stress questionnaires in both datasets range between 1 and 5. Self-reported
tress is inherently highly subjective and, as such, is prone to significant inter-subject differences. Therefore, we have categorised
he stress levels to smooth out the differences between subjects. In this way, these levels have been split into three different regions:
‘low’’, score < 3; ‘‘moderate’’, score = 3; and ‘‘high’’, score > 3.

In both datasets, each stress or location measure is stored along with the timestamp of the moment it was registered. Moreover,
he two datasets contain several daily measures over several weeks. This gives us two possible ways to pose the problem of stress
lassification over time: to perform the classification at the day level or the week level. The former refers to the prediction of the
tress level at a specific interval of the day, given the data from the previous intervals on that day. The latter refers to predicting the
tress level on a specific day, given the data from the previous days in that week. Given this, we performed a different transformation
n the datasets for each case. For prediction at the day level, we have grouped the data by day and defined three different intervals
or each day. Taking into account the different times of the questionnaires of the datasets, these intervals are as follows: from 7 am
o 11 am (morning), from 11 am to 3 pm (noon), and from 3 pm to 7 pm (evening) for the own collected dataset; and from 9 am to
pm (morning), from 6 pm to 12 am (evening), and from 12 am to 9 am (night) for the StudentLife dataset. For the prediction at

he week level, we have grouped the data by week, and then for each day of the week, we have calculated the average stress value
etween all the measures on that day. Also, only working days are considered in both cases, so the datasets have been filtered to
nclude only these days.

While there are several ways to detect proximity between colleagues, based on our previous experience (Carreras et al., 2012;
smani et al., 2014), we opted for the use of location data, including WiFi, Cell ID, and location service. The proximity between
olleagues is computed on the basis of the time spent in the same room during the considered interval. Specifically, we have used
he Jaccard similarity to calculate the intersection between the sets containing the locations of each employee during a certain
ay/week. Jaccard similarity is defined as the relation between the size of the intersection and the size of the union of two sets.
he closest colleagues of an employee are those who present a higher Jaccard index during a certain period. In this way, we can
btain the stress level of each worker at each interval, along with the stress levels of the closest colleagues. The final data format
sed for the proposed method has one row for each interval/day of each day/week (depending on the scenario considered), along
ith the stress level of the individual and the n-closest colleagues.

Finally, it is worth mentioning that the questionnaires of both datasets are based on clinically validated, ecological momentary
ssessments (EMAs) (Shiffman et al., 2008). These assessments address the validity challenge of standard retrospective questionnaires
egarding the influence of subjects’ prior experience. Standard retrospective questionnaires can suffer from issues that affect recall
hen people attempt to recollect or summarise past experiences or feelings. EMAs tackle this challenge by repeatedly sampling

ubjects’ experiences and feelings in real time and in natural environments. Thus, EMAs are intended to minimise recall bias and
aximise ecological validity. This makes them suitable for the study of behaviour or mental state in real-world contexts, such as the

ne considered in our work. The experiment we conducted for data collection and the one conducted in the StudentLife study are
ased on these assessments and responses are taken multiple times a day making them a robust approach to potential recall bias.

. Methods

The presented models have been evaluated through several stress prediction tasks, where the aim is to predict an individual’s
tress level. These models can be implemented using different resources and methods. An experimental study has been designed
o thoroughly evaluate each model’s effectiveness in multiclass stress prediction and identify the optimum resources and methods.
he proposed methods have been validated using the datasets described in the previous section. The methodology followed in this
alidation is described in this section, and the obtained results of the experiments are shown in Section 6.

We postulate the task of predicting perceived stress as a classification problem. In this way, the class to predict is the self-reported
tress level (low, moderate, high), while the attributes correspond to the surrounding stress data. With the purpose of analysing
he performance of the models, three different machine learning classifiers have been used (logistic regression, decision tree, and
7

daboost). Besides, it is interesting to evaluate the performance of a more complex neural network that takes into account sequential
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Table 3
Hyperparameters that obtain the best performance for each kind of data.

Dataset Level Personal Social Personal+Social

Our dataset Day 𝑤 = 3 𝑤 = 2; 𝑛 = 3 𝑤 = 3; 𝑛 = 2
Week 𝑤 = 4 𝑤 = 2; 𝑛 = 3 𝑤 = 5; 𝑛 = 4

StudentLife Day 𝑤 = 2 𝑤 = 1; 𝑛 = 3 –
Week 𝑤 = 3 𝑤 = 2; 𝑛 = 3 𝑤 = 4; 𝑛 = 1

data. To this end, we have developed a sequential model with a Bidirectional LSTM layer followed by a Dense layer with ‘‘sigmoid’’
activation. All experiments have been carried out using 10-fold cross-validation and the weighted average of the F1-Score as the
performance metric. The F1-score is a measure of a model accuracy defined as the harmonic mean of the model precision and recall:

𝐹1 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

= 2 ∗ 𝑇𝑃
2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(10)

The research questions described in Section 1 have shaped the experimental study. The main objective of the experiment is
o provide insight into whether surrounding stress information can be used to predict stress (RQ1). Furthermore, to analyse the
nfluence of each component of the surrounding stress (RQ2), we propose three different scenarios for the experiment: (i) the use of
nly personal data; (ii) the use of only social data; and (iii) the combination of personal and social data. Finally, we test the three
odels separately in Section 5 to investigate the impact of features on the prediction performance of stress levels (RQ3).

Considering these scenarios, different model hyperparameters must be tuned to optimise the classification performance. The
arameters to tune are the window size, 𝑤, which represents the number of measures considered for the prediction, and the number
f close colleagues to consider, 𝑛. As commented in Section 4, the nature of the datasets used provides two different possibilities
o predict stress level: prediction at the day level and prediction at the week level. When predicting at the day level, each day
as a maximum of three intervals in which stress has been measured, so 𝑤 ∈ [1, 2, 3]; while when predicting at the week level,
∈ [1, 2, 3, 4, 5], since only working days are considered. Also, when predicting at the week level, we only take into account the

ata for the days of the week in which the prediction is made. That is, each week is used separately, and data from one week are
ot used to predict the stress levels of the following week. Thus, when the window size is 5, the Friday level is predicted from the
ata of the rest of the working days within that week ([Mon, Tue, Wed, Thu]). Similarly, when the window size is 4, we can predict
he level of Thursday ([Mon, Tue, Wed]) or Friday ([Tue, Wed, Thu]). And so on.

Note that when using personal data, 𝑤 must always be greater than 1, as one of the individual measures is the one level to be
redicted. Regarding the number of close colleagues to consider, we have performed the experiment with up to four colleagues, so
∈ [1, 2, 3, 4]. To select the optimal value of 𝑤 and 𝑛 for each case and each dataset, an exhaustive experiment has been carried

ut in which the model has been tested using all possible values. The results of this experiment are publicly available online for the
nterested reader.1 In summary, Table 3 shows the hyperparameters chosen for each kind of data.

Finally, it is worth mentioning some limitations of the experiment concerning the available data. As expected, our dataset contains
issing values as a result of a lack of response to questionnaire prompts. Missing data are common in these types of experiments

n real-world settings involving participants monitored longitudinally. Therefore, to ensure the reliability and robustness of the
ystem, only samples where all data are available are used to make predictions. In each scenario, we use the maximum amount
f data available for that particular scenario. Thus, for the scenario using only personal data, we need at least two measures of
user: the stress level to be predicted and the previous level. These data would enable the 𝑀𝑆𝐸𝑄 model, as it requires only one

nterval. However, to extract statistical features (𝑀𝑆𝐹 and 𝑀𝐹𝐸 models), at least two measures from previous levels are needed.
imilarly, for the scenario using only social data, at least the user’s predicted stress level and the current level of one of his or her
lose colleagues are required. Again, these data would enable the sequential data model (𝑀𝑆𝐸𝑄), but to enable 𝑀𝑆𝐹 and 𝑀𝐹𝐸 at
east one measure from two colleagues or two measures from one colleague are needed. Finally, for the scenario combining the
wo types of data, at least the predicted stress level of the user, his or her previous level, and the current level of one of his or her
lose colleagues are needed. In this third case, analysing at the daily level for the StudentLife dataset, we find that there are not
nough samples containing at least two measurements of a user’s stress level and one of his or her close colleagues for the same
ay. However, there are enough samples with at least two measurements of the user’s stress level and enough samples with at least
ne measurement of his or her stress level, and one from a close colleague. For this reason, when we use the StudentLife dataset
t the day level, we have sufficient data for the scenario that uses only the personal component and for the scenario that uses only
he social component, but not for the scenario that combines both.

. Results

Once the hyperparameters have been tuned for the personal and social data, we proceed to evaluate the proposed models. First,
e evaluate the models in the first scenario, that is, using only personal data. This experiment allows us to analyse whether the
se of the individual’s previous data can provide good results for stress prediction. We have completed the experiment using the

1 https://gsi.upm.es/~smunoz/stress-ambient/.
8
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Table 4
Experiment results for the three defined scenarios. The results show the weighted F-score measure obtained with each model in
each dataset with the corresponding classifier.

Component Classifier Our dataset StudentLife

𝑀𝑆𝐸𝑄 𝑀𝑆𝐹 𝑀𝐹𝐸 𝑀𝑆𝐸𝑄 𝑀𝑆𝐹 𝑀𝐹𝐸

Day level

Personal
LogR 55.69 55.01 55.69 34.58
DT 58.38 58.38 58.84 56.22
ADA 58.68 58.98 58.01 56.22

Social
LogR 45.77 44.3 47.52 60.48 40.08 60.52
DT 47.79 48.63 51.31 59.09 49.18 60.97
ADA 37.87 51.67 53.27 59.51 46.25 57.15

Personal+Social
LogR 71.49 66.74 70.43
DT 52.5 55.62 73.17
ADA 57.89 59.17 67.11

Week level

Personal
LogR 62.78 66.62 69.85 53.58 52.92 55.25
DT 72.01 67.09 72.35 60.9 61.54 61.5
ADA 63.16 64.35 69.04 57.64 57.06 59.35

Social
LogR 43.71 52 55.8 67.59 71.37 72.89
DT 57.45 55.32 59.92 65.01 67.37 70.55
ADA 49.33 53.71 57.47 61.01 68.16 66.6

Personal+Social
LogR 69.22 64.42 74.6 64 73.46 78.75
DT 76.48 71.83 79.16 78.31 80.57 81.79
ADA 68.13 63.97 67.01 76.3 69.58 72.27

hyperparameters shown in Table 3. The results of the experiment are shown in Table 4. We can see that the classifier is able to
predict a future stress level using only previous personal data. The results show that when predicting at the day level, we can predict
the stress level with a nearly 59% and 56% F-score for the own collected dataset and the StudentLife dataset correspondingly. When
predicting at the week level, the F-score increases up to 72% for our dataset and 61% for the StudentLife dataset. If we analyse the
performance of the different proposed models, we can appreciate that, in general, the use of statistical features improves over the
use of only sequential data, and the best average results are obtained when combining sequential data with statistical features, that
is, with the 𝑀𝐹𝐸 model.

After analysing the scenario of the personal data, we proceed to analyse the second scenario: the use of only social information.
Again, we have completed the experiment using the hyperparameters obtained from the tuning, shown in Table 3. Table 4 shows
the results of the experiment. We can see that, in general, the classifiers perform a little worse on this kind of data for our dataset.
However, it still achieves results close to 60% of F-score. Although these results may seem low or poor, it is worth remembering
that they are obtained using only data external to the individual. Furthermore, for the StudentLife dataset, we can see a significant
enhancement, with a performance that surpasses 70% of F-score. When analysing the performance of the different models proposed,
we can appreciate that the best results are obtained when combining sequential data with statistical features (𝑀𝐹𝐸 model). In this
case, the improvement of the 𝑀𝐹𝐸 model is more evident.

Finally, we conclude our experiments with the third scenario: the combination of personal and social information to predict
individual stress. We can see the results of the experiment in Table 4. There were not enough data for predicting at the day level
in the StudentLife dataset for this experiment. However, by analysing the results for the own collected dataset, we can appreciate
a significant improvement in the classifier’s performance that yields an F-score of 73.17%. This entails an increase of almost 15
and 20 percentage points with respect to the use of only personal data and only social data. This enhancement is confirmed when
analysing the experiment results at the week level. We can see that the combination of personal and social information results in
a significant performance improvement. In terms of F-score, the classifier achieves peaks of 79.16% and 81.79% using our dataset
and the StudentLife dataset, respectively. This entails an increase of almost 10 percentage points. These results confirm that it is
possible to predict stress using surrounding stress-related data (RQ1).

When comparing classifiers, we see that, in general, decision tree is the one that performs better. Whereas these classifiers have
shown good performance, they do not take into account sequential data. To study whether the proposed approach could benefit
from a more complex neural network that considers this kind of data, we have implemented our approach using LSTM. We have
developed a sequential model with a Bidirectional LSTM layer followed by a Dense layer with ‘‘sigmoid’’ activation. The results,
along with their comparison with the best performing classifier, are shown in Table 5.

The results indicate that the limited amount of data available hinders the performance of complex neural networks such as LSTM.
Among all the experiments, LSTM only yields the best result when using the social component at the week level in our dataset.
Analysing how the results vary according to the hyperparameters (window size and the number of colleagues), we can observe
that LSTM requires a larger amount of information. To improve performance, this method requires larger window sizes or a higher
number of close colleagues compared to other classifiers. This can be easily observed by looking at the hyperparameters chosen for
9

the scenarios using only personal or only social data. However, as the size of the window or the number of colleagues increases, the
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Table 5
Performance comparison between the best performing classifier and an LSTM model.

Dataset Classifier Hyperparameters F-score

Day level

Personal
Our dataset LSTM 𝑤 = 3 54.34

ADA 𝑤 = 3 58.98

StudentLife LSTM 𝑤 = 2 31.17
DT 𝑤 = 2 56.22

Social
Our dataset LSTM 𝑤 = 3; 𝑛 = 3 43.97

ADA 𝑤 = 2; 𝑛 = 3 53.27

StudentLife LSTM 𝑤 = 1; 𝑛 = 3 55.32
DT 𝑤 = 1; 𝑛 = 3 60.97

Personal+Social Our dataset LSTM 𝑤 = 3; 𝑛 = 1 52.69
DT 𝑤 = 3; 𝑛 = 2 73.17

Week level

Personal
Our dataset LSTM 𝑤 = 5 65.68

DT 𝑤 = 4 72.35

StudentLife LSTM 𝑤 = 4 43.83
DT 𝑤 = 3 61.54

Social
Our dataset LSTM 𝑤 = 2; 𝑛 = 5 63.56

DT 𝑤 = 2; 𝑛 = 3 59.92

StudentLife LSTM 𝑤 = 3; 𝑛 = 2 66.33
DT 𝑤 = 2; 𝑛 = 3 72.89

Personal+Social
Our dataset LSTM 𝑤 = 4; 𝑛 = 4 59.13

DT 𝑤 = 5; 𝑛 = 1 79.16

StudentLife LSTM 𝑤 = 3; 𝑛 = 1 49.82
DT 𝑤 = 4; 𝑛 = 1 81.79

number of samples available in the used datasets decreases. This causes the performance to drop as there are insufficient samples
to successfully train the neural network. Thus, in the scenario combining the personal component with the social component, the
maximum performance is obtained with a slightly smaller window size compared to other classifiers.

From this analysis, we can observe that LSTM could be an interesting proposal to consider. It would allow the system to take
dvantage of the temporal information inherent in sequential stress data. Nevertheless, it requires a larger amount of information.

Once the results of the experiment have been analysed, we have performed the Friedman statistical test (Demšar, 2006) in order
o further study the impact of the presented models and their performance. This test aims to determine whether we may conclude
rom the sample of results that there is a difference between the classification methods. As a result, the Friedman test ranks methods
ccording to their performance on different datasets. The lower the ranking of a specific method, the better its performance in
omparison to the rest.

The first step in calculating the Friedman test is to convert the actual results into ranks. Let 𝑟𝑗𝑖 be the rank of the 𝑗th algorithm
in the 𝑖th dataset, and 𝑘 and 𝑛 the number of methods and datasets, respectively. Friedman’s test compares the mean ranks of the
methods 𝑅𝑗 =

1
𝑛
∑

𝑖 𝑟
𝑗
𝑖 and establishes that the Friedman statistic under the null hypothesis (all algorithms are equal, so their ranks

re also equal) is:

𝑋2
𝐹 = 12𝑛

𝑘(𝑘 + 1)
(
∑

𝑗
𝑅2
𝑗 −

𝑘(𝑘 + 1)2

4
) (11)

and with 𝑘 − 1 degrees of freedom. However, Iman and Davenport (1980) proposed a better static distributed according to the
F-distribution, with 𝑘 − 1 and (𝑘 − 1)(𝑛 − 1) degrees of freedom:

𝐹𝐹 =
(𝑛 − 1)𝑋2

𝐹

𝑛(𝑘 − 1) −𝑋2
𝐹

(12)

We perform the test with an 𝛼 value of 0.1. On those averages, 𝑋2
𝐹 = 24.13, 𝐹𝐹 = 9.20, and the critical value 𝐹 (𝑘−1, (𝑘−1)(𝑛−1)) =

3.36. Given that 𝐹𝐹 > 𝐹 (8, 24), the null hypothesis of the Friedman test is rejected. For simplicity, Table 6 shows the five best
approaches according to their ranks, as computed by the Friedman test.

As can be seen, Friedman’s test points out that the method of combining personal with social information is the best classification
model. The three lower ranks are obtained when combining data from both sources, whereas the following two are obtained using
only personal data. This confirms that when using only one source of information, personal data outperforms social data (RQ2) and
that the best results are obtained when combining personal and social information. Also, we see that the combination of statistical
features and sequential data surpasses the use of only sequential data or only statistical features (RQ3). Best results are obtained
when using the feature ensemble model along with the combination of personal and social data. These results demonstrate the
effectiveness of using surrounding data for predicting stress (RQ1), especially when combining personal and social data.
10
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Table 6
Friedman rank for the top-5 models.
Model Components Rank

𝑀𝐹𝐸 Personal+Social 1
𝑀𝑆𝐸𝑄 Personal+Social 2.5
𝑀𝑆𝐹 Personal+Social 2.75
𝑀𝐹𝐸 Personal 4.75
𝑀𝑆𝐹 Personal 6.25

7. Discussion

Three research questions drove this work as presented in Section 1. First, in RQ1, we investigated whether surrounding stress-
elated information can be used to predict the stress levels of individuals. In this regard, a novel approach that exploits this
nformation yielded substantial performance, as shown by the experiments, reaching an F-Score of 79% in our dataset and 81%
n the external dataset. Therefore, it is reasonable to assume that surrounding stress-related information is highly relevant to stress
rediction.

Our second question (RQ2) pertained to how personal and social stress information compare in terms of predictive performance.
n this sense, the statistical results identify the combination of personal and social data as the best-performing approach. This
onfirms the effectiveness of the combination of different sources of stress information that these methods perform, resulting in a
otable improvement compared to the other methods. If we compare with the use of only one kind of data, analysing the results,
e can conclude that the use of personal data achieves better performance than the use of social data.

The last question (RQ3) was concerned with investigating methods of feature extraction that can improve the stress prediction
erformance. In this respect, the results have shown that the combination of sequential and statistical features is the best-performing
ethod. This model yields the best results for all the scenarios.

Based on our results, we can conclude that the use of surrounding stress-related information can yield substantial performance
n stress prediction. Our findings are in line with current research on affective state contagion occurring during interpersonal social
nteractions, which states the significant influence of closest people on the individual’s affective state (Dimitroff et al., 2017; Engert
t al., 2019; Jia & Cheng, 2021; Petitta et al., 2021). Furthermore, our results are also consistent with current literature in terms of
ow historical affective-related data can play a role in future moods (Goodday & Friend, 2019; Hollis et al., 2017). However, as far
s we know, this is the first study investigating the use of surrounding stress-related data to predict future stress levels.

Our findings have important implications in stress prediction approaches. Taking into account personal and social-related stress
hen attempting to predict an individual’s stress level could enhance the system’s prediction performance. This kind of information

an be combined with approaches used in other works (such as physiological and behavioural data) to reduce the quantity of data
eeded (and consequently the number of sensors) and improve the effectiveness of stress detection methods in the presence of
carce data. Finally, one of the main findings of this work is that stress can be contagious and stress of an individual can affect
lose colleagues. Therefore, this is an indication that in addressing well-being of the workforce a holistic approach should be taken
n tackling occupational stress rather than focusing on individuals only.

. Conclusions

Workplace stress is a concern since it negatively affects employees’ health and organisational performance, reducing workers’
ell-being and decreasing productivity. However, appraising stress is a complicated issue that entails high costs and complexity,
articularly when relying on non-obtrusive approaches. In this work, we presented a method for predicting stress using surrounding
tress-related data, that is, using previous levels from the individuals and their close colleagues. We considered two components of
urrounding stress data: the personal and social components.

Besides, an extensive analysis based on two different datasets with real-life behavioural data of office workers and students has
een carried out, achieving an F-score near 80% for stress level prediction. To the best of our knowledge, this is the first study into
upervised stress recognition using surrounding stress data acquired from previous data from workers and their closest colleagues.
ur results confirm that it is possible to predict perceived stress at work using surrounding stress information.

We believe our findings on the effect of surrounding stress on workers open new research lines to improve future monitoring
ystems that may enable a better understanding of work-related stress, the impact on occupational health, and the management
f human resources. Besides, we consider that this work presents some challenges that can be addressed by future work. One of
hese challenges is to extend the dataset with new experiments in real environments. A larger amount of data may allow the system
o benefit from the advantages of more complex neural network models, which are better suited for dealing with sequential data.
lso, it may enable long-term prediction using longer sequences, allowing evaluation of the impact of sequence length on prediction
erformance. In this line, weekend stress levels may also be an interesting challenge to address. This would not only allow predictions
o be made between different weeks but also help to understand how certain parameters relating to weekends (e.g., rest, activities,
eisure) can help to reduce work-related stress. Finally, remote working practices are becoming common nowadays, and they are a
ew interesting area of research for studying occupational stress.
11
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