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Abstract. Recent advancements in non-invasive detection of cardiac
hemodynamic instability (CHDI) primarily focus on applying machine
learning techniques to a single data modality, e.g. cardiac magnetic res-
onance imaging (MRI). Despite their potential, these approaches often
fall short especially when the size of labeled patient data is limited, a
common challenge in the medical domain. Furthermore, only a few stud-
ies have explored multimodal methods to study CHDI, which mostly
rely on costly modalities such as cardiac MRI and echocardiogram. In
response to these limitations, we propose a novel multimodal variational
autoencoder (CardioVAEX,G) to integrate low-cost chest X-ray (CXR)
and electrocardiogram (ECG) modalities with pre-training on a large
unlabeled dataset. Specifically, CardioVAEX,G introduces a novel tri-
stream pre-training strategy to learn both shared and modality-specific
features, thus enabling fine-tuning with both unimodal and multimodal
datasets. We pre-train CardioVAEX,G on a large, unlabeled dataset of
50, 982 subjects from a subset of MIMIC database and then fine-tune the
pre-trained model on a labeled dataset of 795 subjects from the ASPIRE
registry. Comprehensive evaluations against existing methods show that
CardioVAEX,G offers promising performance (AUROC = 0.79 and Ac-
curacy = 0.77), representing a significant step forward in non-invasive
prediction of CHDI. Our model also excels in producing fine interpre-
tations of predictions directly associated with clinical features, thereby
supporting clinical decision-making.

Keywords: Cardiac hemodynamics instability, Variational autoencoder,
Multimodal learning, Interpretable model
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1 Introduction

Cardiac hemodynamic instability (CHDI) can lead to unreliable and inefficient
cardiovascular function and even heart failure. Pulmonary Artery Wedge Pres-
sure (PAWP) is an important surrogate marker for detecting the severity of
CHDI and heart failure. Elevated PAWP indicates left ventricular filling pres-
sure and reduced contractility of the heart [3]. It can be precisely measured by
invasive and expensive right heart catheterization (RHC). However, simpler and
non-invasive methods are often required to monitor critical patients. In recent
years, several machine learning-based and/or deep learning-based methods were
developed for PAWP prediction from medical images acquired by non-invasive
technique [3,26,27]. It has been shown that it is possible to predict PAWP not
only from high-cost, high precision scans such as cardiac magnetic resonance
imaging (MRI) [3] and echocardiography [26], but also from more affordable,
accessible scans or measurements such as chest X-rays (CXR) [15,16,8] and elec-
trocardiogram (ECG) [22,23].

Most aforementioned studies focus mainly on extracting measurements from
one, single data modality. More recently, multimodal learning has demonstrated
superior diagnostic performance to unimodal learning approaches [28,31,25]. For
example, Tripathi et al. [27] developed a tensor-based multimodal pipeline to
combine features from cardiac MRI imaging with cardiac measurement for higher
precision. In this work, we developed a multimodal model utilizing only low-
cost modalities, e.g., CXR and ECG, to improve the performance of PAWP
prediction. Such a low-cost approach is more relevant and feasible for broader
adoption in low-income countries with limited access to MRI scans. The two
main challenges in this low-cost approach are a) the limited information in 2D
CXR images and 1D ECG signals compared to MRI and ultrasound and b) the
scarcity of PAWP measurements in the labeled dataset relating to the difficulty
and expense of obtaining precise and invasive PAWP.

To tackle the above challenges, we first develop a cardiac multimodal varia-
tional autoencoder (CardioVAEX,G), aiming at maximizing the value from CXR
images and ECGs through joint training. Specifically, CardioVAEX,G is first pre-
trained using a novel tri-stream multimodal pre-training strategy, leveraging the
value from a large-scale public, unlabeled paired CXR and ECG data to re-
duce the need for large-scale, labeled data. We then fine-tune the pre-trained
model on a relatively small dataset for the PAWP prediction task. The main
contributions of this paper are three-fold: 1) We introduce CardioVAEX,G,
a novel multimodal variational autoencoder (Fig. 1) for low-cost, non-invasive
PAWP prediction. Unlike previous approaches that rely on expensive modalities
such as cardiac MRI, CardioVAEX,G efficiently integrates lower-cost CXR and
ECG modalities. 2) We develop a novel tri-stream pre-training strategy with
CardioVAEX,G model to learn both shared and modality-specific features. This
approach enables our CardioVAEX,G model to be fine-tuned with unimodal or
multimodal datasets, greatly improving usability. 3) We performed extensive
experiments to show the promising performance of our model. Another unique
feature is that CardioVAEX,G is capable of providing explainable feature visu-
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Fig. 1: The baselines and proposed CardioVAEX,G for PAWP prediction. (a) Top
left: the single stream MVAE baselines [30,18] require pre-training on paired
data (CXR, ECG) and utilize only the shared features using concatenation or
product of expert (PoE) [7] based multimodal fusion methods. (b) Bottom: Tri-
stream multimodal pre-training that can learn both shared and modality-specific
features. (c) Top right: fine-tuning on ASPIRE registry. Due to the tri-stream
flow, our model can be fine-tuned on a single modality or both modalities.

alization for the interpretation of the clinical decisions (see Fig. 2), enhancing
their applicability and reliability in real-world scenarios.

2 Methods

The proposed CardioVAEX,G for PAWP prediction is depicted in Fig. 1. It lever-
ages low-cost CXR and ECGmodalities for the prediction. Our model utilizes tri-
stream multimodal pre-training, incorporating data streams from three sources:
CXR, ECG, and the modality pair (CXR, ECG). Tri-stream setting allows our
model to learn modality-specific features along with shared features in contrast
with the baseline MVAE [30] that utilizes only the shared features of CXR and
ECG. In the following, we discuss each building block of our model.
CXR Encoder: Our CXR encoder incorporates a convolutional neural network
(CNN) consisting of three Convolutional (CONV) layers. It processes a CXR im-
age XCXR ∈ RH×W×C , where H, W , and C represent the height, width, and
number of channels, respectively. Each CONV layer is configured with a 3 × 3
kernel, a stride of 2, and padding of 1. We use channel depths of 16, 32, and
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64 in CONV layers. Following this, the data is flattened and passed through
two Fully Connected (FC) layers to produce the mean (µCXR) and variance
(σ2

CXR) vectors, which are crucial for defining the CXR image’s latent space
representation and establishing its approximate posterior distribution parame-
ters qϕCXR

(z|XCXR).

ECG Encoder: The ECG encoder comprises three one-dimensional (1D) CONV
layers. It processes the sequential ECG signal xECG ∈ RL, where L denotes the
length of the signal. Each 1D CONV layer is configured with a kernel size of
1 × 3, a stride of 2, and padding of 1. We use channel depths of 16, 32, and
64 in three CONV layers. Following this, the signal is flattened and processed
through two FC layers, yielding the mean (µECG) and variance (σ2

ECG) which
are crucial for the ECG signal’s latent space representation and its approximate
posterior distribution qϕECG(z|xECG).

Multimodal Integration: In multimodal integration, we employ a Product of
Experts (PoE) [7] approach to combine the approximate posterior distributions
from the CXR and ECG encoders with a standard Gaussian prior p(z) = N (0, I)
into a unified latent space, effectively synthesizing the individual expert opin-
ions, where I is the identity matrix. The combined mean µ and variance σ2 of
the latent space [10] are computed as: µ = (

∑M
m=1 µm/σ2

m)/(
∑M

m=1 1/σ
2
m) and

σ2 = 1/(
∑M

m=1 1/σ
2
m), where m represents the modality, ranging from 1 to M .

This leads to the calculation of the latent space variable z using the reparame-
terization trick z = µ+σ ·ϵ, where ϵ is drawn from N (0, I). This step allows the
decoders to generate diverse yet consistent reconstructions, effectively establish-
ing the approximate joint posterior distribution qϕCXR,ECG

(z|XCXR,xECG) and
reflecting a deep understanding of the merged input data.

Decoder Design: The CXR and ECG decoders aim to reconstruct inputs from
the latent variable z, sampled from the unified latent space learned by the PoE [7]
approach. For CXR image reconstruction, the CXR decoder pθCXR

(XCXR|z) is
a CNN consisting of three transposed convolutional layers, effectively restoring
sample XCXR from latent variable z. Similarly, the ECG decoder pθECG

(xECG|z)
utilizes three 1D transposed convolution layer to convert z into precise temporal
waveform xECG. This reconstruction process leverages the inherent flexibility of
the Gaussian distribution within the latent space, enabling the production of
diverse, high-fidelity reconstructions by sampling various z points.

Tri-stream Pre-training Strategy: For pre-training, we extend [30,12] to
introduce a tri-stream strategy that processes CXR and ECG data both sepa-
rately and jointly to capture the unique and shared features of each modality
in the latent space. We pass three data streams through our CardioVAEX,G

model: 1) CXR only, 2) ECG only, and 3) paired CXR and ECG, and calculate
three separate losses for each stream by incorporating Evidence Lower Bound
(ELBO) [14]. We define LCXR for CXR, LECG for ECG, and L(CXR,ECG) for
joint loss, as follows:

LCXR = EqϕCXR
(z|XCXR)[λCXR log pθCXR

(XCXR|z)]−βDKL[qϕCXR
(z|XCXR)||p(z)],

(1)



Multimodal Variational Autoencoder for Cardiac Hemodynamics 5

LECG = EqϕECG
(z|xECG)[λECG log pθECG

(xECG|z)]− βDKL[qϕECG
(z|xECG)||p(z)],

(2)

L(CXR,ECG) = EqϕCXR
(z|XCXR)[λCXR log pθCXR

(XCXR|z)]
+EqϕECG

(z|xECG)[λECG log pθECG
(xECG|z)]

−βDKL[qϕ(CXR,ECG)
(z|XCXR,xECG)||p(z)], (3)

where the first part Eqϕ of the losses is the expected conditional log-likelihood of
the data given the latent variable z, indicating how well the model reconstructs
the data. This part takes the reconstructed output from the decoder and finds the
reconstruction error. The second part of the losses, DKL, is the Kullback-Leibler
(KL) divergence [2] between the approximate posterior (CXR or ECG or CXR-
ECG) and the prior distribution p(z), following the Gaussian distribution, over
the latent variables, calculated in encoders and multimodal integration phase.
These losses aim to maximize the likelihood of the data while minimizing the
difference between the approximate posterior and the prior. Moreover, in our
losses, we incorporate two important hyperparameters λ [17] to balance the
weights of modalities and β [6] to balance the trade-off between reconstruction
loss and KL divergence. In practice, λ = 1 and β are slowly annealed from 0 to
1 to form a valid lower bound on the evidence [1]. After calculating three losses
in Eq. (1-3) for the three streams, we combine them to obtain a total loss Ltotal

as follows:
Ltotal = LCXR + LECG + L(CXR,ECG). (4)

The tri-stream methodology enhances the model’s capability to accurately
represent and reconstruct multimodal data, leveraging the strengths of each
modality towards a comprehensive representation of the multimodal inputs for
improved overall performance.
Fine-tuning Strategy: Applying the pre-trained model to the CXR-ECG clas-
sification task is straightforward, as tri-stream pre-training enables the model
to learn both modality-specific and shared features. During fine-tuning, the new
downstream dataset is passed through the frozen model to extract features which
are subsequently processed by two FC layers. The binary cross-entropy loss [4]
is used for fine-tuning our model.

3 Experimental Results and Analysis

Dataset for Pre-training: We pre-trained our CardioVAEX,G model using two
datasets, MIMIC-CXR [11] and MIMIC-IV-ECG [5], by pairing them via unique
patient ID and time. This gave us 50, 982 pairs of CXR-ECG samples.
Study Population and Dataset for Downstream Task: We evaluated all
models using a dataset from the ASPIRE registry [9] for the detection of CHDI
via PAWP prediction in patients with suspected pulmonary hypertension. The
local institutional review board and ethics committee approved this study. A
total of 795 patients who underwent RHC, CXR, and ECG were included in
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Table 1: Patients characteristics of included patients in ASPIRE registry dataset.
p-values were obtained using t-test [29].

Low PAWP(≤ 15) High PAWP(> 15) p-value

Number of patients 560 235 -

Age (in years) 58.98± 15.30 62.62± 13.75 0.0017

Body Surface Area (BSA) 1.92± 0.26 1.98± 0.24 0.0025

Heart Rate (bpm) 78.87± 13.87 74.75± 14.93 0.0002

Pulmonary Artery Pressure 42.78± 14.01 44.86± 12.31 0.0483

Pulmonary Artery Systolic Pressure 71.35± 24.00 75.86± 23.75 0.0155

Pulmonary Artery Diastolic Pressure 25.06± 10.13 26.82± 7.87 0.0176

PAWP (mmHg) 9.94± 3.06 19.42± 3.51 < 0.0001

this study. Based on the measurements from RHC (using a balloon-tipped 7.5
French thermodilution catheter), we found 560 patients with normal PAWP
(≤ 15 mmHg), and 235 with elevated PAWP (> 15 mmHg). Table 1 summarizes
the patient characteristics of the used ASPIRE registry dataset.

Experimental Design: We converted CXR and 12-lead ECG data to 2D im-
ages (224 × 224) and 1D signals (1 × 60, 000), respectively. We pre-trained our
model with unlabeled MIMIC subset [11,5] by partitioning it with a 90 : 10
ratio for training and validation sets. The hyperparameters for λCXR and λECG

were selected using grid search. The optimal hyperparameters were then used
to pre-train CardioVAEX,G model on the whole MIMIC subset. We used the
Fréchet inception distance [20] to assess the performance of pre-training. For
pre-training, we used Adam optimizer with a learning rate of 0.001 and a batch
size of 128, and trained for 100 epochs to ensure the model convergence.

For fine-tuning, we froze the layers in the encoders and fine-tuned FC layers
on the ASPIRE registry dataset. We used 128 nodes in FC layer and used a
dropout of 0.5. We evaluated the prediction performance using 10-fold cross-
validation with a training and validation ratio of 80 : 20. We set the learning
rate to 0.001 and the batch size to 32, and trained the model for 50 epochs.
We used Area Under Receiver Operating Curve (AUROC) and accuracy metrics
to assess classification performance. Moreover, we calculated the p-values of our
best-performing model against other models to show the statistical significance
of the results. For a fair comparison, we used the same training settings and data
partitioning for comparing methods [16,23,18,30]. An Nvidia RTX4090 GPU was
used for all experiments. The implementation of all the models was carried out
in Python (version 3.10) with PyTorch [21].

Unimodal Study: Table 2 compared the results of unimodal models for CXR
and ECG in rows 2− 7. We considered Kusunose et. al.’s method [16] as a base-
line for CXR modality and Schlesinger et al.’s method [23] as a baseline for ECG.
Our CardioVAEX,G fine-tuning on unimodal data outperformed other unimodal
methods for both modalities. The results show that CardioVAEX,G obtains im-
provements of ∆AUROC = 0.100 and ∆Accuracy = 0.014 over the CXR base-
line [16], and the improvements of ∆AUROC = 0.074 and ∆Accuracy= 0.024
over ECG baseline [23]. The baseline methods do not use the unsupervised pre-
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Table 2: Performance comparison using two metrics (with best in bold). CM:
Cardiac Measurements from cardiac MRI, CMRI (4ch): Four-chamber cardiac
MRI. Garg et al. [3]♦ and Tripathi et al. [27]♦ were tested on a different cohort
and included here for reference only.

Modality(s) Method AUROC p-valueAUC Accuracy

Unimodal

CXR
CNN 0.638± 0.06 < 0.0001 0.675± 0.03
Kusunose et al. [16] 0.581± 0.04 < 0.0001 0.695± 0.06
CardioVAEX,G (ours) 0.681± 0.05 < 0.0001 0.709± 0.04

ECG
CNN 0.724± 0.05 < 0.0021 0.707± 0.05
Schlesinger et al. [23] 0.670± 0.03 < 0.0001 0.703± 0.04
CardioVAEX,G (ours) 0.744± 0.05 0.0226 0.727± 0.04

CM Garg et al. [3]♦ 0.730± 0.04 - 0.740± 0.03

Multimodal

CMRI (4ch) & CM Tripathi et al. [27]♦ 0.813± 0.02 - 0.792± 0.02

CXR & ECG

CNN 0.748± 0.05 0.0352 0.735± 0.03
Li et al. [18] 0.737± 0.05 0.0101 0.724± 0.04
Wu et al. [30] 0.758± 0.03 0.0283 0.756± 0.04
CardioVAEX,G (ours) 0.790± 0.03 - 0.772± 0.04

training of models. Our CardioVAEX,G leverages pre-training from a large un-
labeled dataset, and learns modality-specific features for the inference, enabling
it to achieve better performance. To show the effect of pre-training, unimodal
CNN models (row 1 and 4) are included in Table 2 which use the same encoders
and classification layers as in our CardioVAEX,G without pre-training. The re-
sults show that pre-training is important in achieving higher performance. We
also included the current baseline model for high-cost cardiac MRI unimodal for
PAWP prediction (row 7), which was tested on a different cardiac MRI cohort
and not for direct comparison with our low-cost unimodal models.

Multimodal Study: We compared CardioVAEX,G fine-tuned with multimodal
(CXR & ECG) data against four competing methods (rows 8− 11) in Table 2.
Li et al. [18] used feature concatenation to combine two modalities in their
multimodal variational autoencoder. Wu et al. [30] utilized Product of Expert
(PoE) based fusion. These two methods are based on a single-stream approach.
Our CardioVAEX,G outperformed these two methods. Therefore, the tri-stream
strategy in our model is effective for learning unique modality-specific along
with shared features for prediction. Additionally, obtained p-values show that
our best-performing model produces statistically significant results against other
models. We also included the comparison with the multimodal pipeline in Tri-
pathi et al. [27] which was tested on a different cardiac MRI cohort. The results
show that our model produces very competitive performance using low-cost data
modalities. The scanning cost and time of cardiac MRI are very high in compar-
ison to CXR and ECG modalities. Faster and easier scanning is vital for critical
patients in clinical settings. Thus, PAWP prediction using CXR and ECG will be
beneficial for clinicians. Next, our model also produces better results than multi-
modal CNN model (row 9) which uses the same backbone as our model without
multimodal pre-training, showing the potential of multimodal pre-training.
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(a) Normal PAWP Patient (b) Elevated PAWP Patient

Fig. 2: Interpretability of CardioVAEX,G for two subjects using integrated gra-
dients method [24]. (a) 1D ECG (top left) and CXR (bottom left) for normal
PAWP, (b) 1D ECG (top right) and CXR (bottom right) for elevated PAWP.
Green annotations on CXRs highlight seven regions of the heart and lungs,
marked by an expert clinician for enhanced visualization of key areas. The 1D
ECG signal was smoothed with NeuroKit2 [19] library for better visualization.

Model Interpretation:We used the integrated gradients method [24] to demon-
strate the interpretability of our best performing CardioVAEX,G model with both
CXR and ECG modalities. Fig. 2 depicts important regions for a normal subject
and an abnormal subject, as identified by our model’s decisions. For ECG, the
model focuses on R peak (for normal PAWP) as shown in zoomed-in segments,
whereas the model relies on R and S peaks for abnormal PAWP. This indicates
that our model performs the prediction based on QRS complex region [13]. The
distinct alterations in the QRS complex enable the identification of left ventric-
ular structural changes and conduction abnormalities, which are closely linked
to variations in PAWP, reflecting the heart’s response to altered cardiac hemo-
dynamic states. In CXR images, the model focuses on cardiac regions, i.e. the
left and right ventricles and arteries. By examining these regions in CXR, the
model identifies their enlargement or structural changes, important indicators
of cardiac function and fluid status. This offers important insights into PAWP
levels by detecting subtle radiographic features of cardiac hemodynamic shifts
and ventricular pressure alterations.

4 Conclusion and Future Work
This paper presented a multimodal variational autoencoder for CHDI detec-
tion from CXR and ECG. We showed that 1) the low-cost medical modalities
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(i.e., CXR and ECG) can be used to detect CHDI and are comparable to [3,27]
from high-cost modalities such as cardiac MRI, 2) the employed tri-stream un-
supervised pre-training improved the performance of unimodal and multimodal
models compared to [16,23,18,30], and 3) interpretations made by our model are
relevant for clinical decision-making as confirmed by a clinician. Future work can
extend CardioVAEX,G to other cardiac hemodynamics prediction tasks.
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