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Abstract Wastewater treatment plants use many sen-
sors to control energy consumption and discharge qual-
ity. These sensors produce a vast amount of data which
can be efficiently monitored by automatic systems. Con-
sequently, several different statistical and learning
methods are proposed in the literature which can auto-
matically detect faults. While these methods have
shown promising results, the nonlinear dynamics and
complex interactions of the variables in wastewater data
necessitate more powerful methods with higher learning
capacities. In response, this study focusses on modelling
faults in the oxidation and nitrification process. Specif-
ically, this study investigates a method based on deep
neural networks (specifically, long short-term memory)
compared with statistical and traditional machine-
learning methods. The network is specifically designed
to capture temporal behaviour of sensor data. The pro-
posed method is evaluated on a real-life dataset contain-
ing over 5.1 million sensor data points. The method
achieved a fault detection rate (recall) of over 92%, thus
outperforming traditional methods and enabling timely
detection of collective faults.
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Introduction

Water collected from households and industrial plants
must be treated before being discharged into rivers or
other water bodies. In this respect, wastewater treatment
plants (WWTPs) play an essential role in reducing en-
vironmental pollution through removing or breaking
down pollutants and reclaiming wastewater. However,
WWTPs are complex systems that must maintain a high
performance, despite temporal dynamics, such as daily
and seasonal changes or human activity. To safely and
optimally operate a WWTP, it is necessary to monitor
the treatment process online, which is costly and re-
quires specialized equipment. In response, several sen-
sors are used to monitor WWTP influents, such as
ammonia, dissolved oxygen, several nutrients,
suspended solids, and organic matter. However,, it is
practically impossible to always ether deploy perfectly
working sensors, have human experts monitor them or
redesign sensor placement (Villez et al. 2016). Conse-
quently, an important research direction is to precisely
monitor faults in the sensors. Faults can be of different
types and occur at different locations; however, this
work focusses on fault detection in influent sensors,
specifically ammonia measurement sensors in nitrifica-
tion oxidation tanks. As WWTPs generate a large
amount of data, a promising solution lies in the auto-
matic detection of such faults in the system, using
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machine-learning methods and algorithms to automati-
cally process the data. This information can then be
integrated into environmental decision support systems
(Poch et al. 2004) that would enable WWTPs to main-
tain a high performance and low emissions at all times,
and where faults can be acted upon in a timely manner.

The challenge of fault detection in the nitrification
oxidation tank

A part of the degradation processes of macro-pollutants
takes place in the nitrification oxidation tank in which
the carbon is oxidized and the ammonia is converted
into nitrate. The process is guaranteed by the insufflation
of air into the tank. The control of the blowers is a
priority in order to perform a correct and efficient man-
agement of the purifier, obtaining a high purifying per-
formance at an adequate energy cost. The control of the
oxidation and nitrification process is mainly regulated
by setting a static oxygen set point and modulating the
air flow necessary to maintain the set point. The main
limit of this system is that, under conditions of low load
treated by the purifier, the minimum air flow delivered
by the blowers is greater than that required to maintain
the oxygen set point with a consequent increase of
dissolved oxygen and energy waste. As a solution, a
control process is used in these tanks (based on the
concentration of ammonia nitrogen present in the oxi-
dation tank) that dynamically calculates the oxygen set
point to be kept in the tank, setting the set point to zero
when the concentration of ammonia decreases below a
predetermined value. Although the management of the
purification process based on ammonia measurements
has shown great functionality over the years, an errone-
ous ammonia measurement can lead to non-compliance
with the discharge quality required by law or to a high
unjustified energy consumption. Therefore, the focus of
the proposed work is to detect these types of faults in the
ammonia measurements as early and as precisely as
possible.

Faults categorisation

In general, faults can be categorised into three groups:
(1) individual faults, which are unexpected single data
instances with respect to other data points; (2) contex-
tual faults that include the individual instances which are
anomalous in a specific context and normal in another
context; and (3) collective faults, which are manifested

through the occurrence of an irregular collection of
instances with respect to other data trends (Chandola
et al. 2009). The instances in collective faults are not
necessarily irregular themselves, but a sequence of them
is considered anomalous. For instance, when the data
points in a sequence occur in an unexpected order or in
an unacceptable combination, it is considered to be a
collective fault. While several studies have been con-
ducted in using machine-learning techniques to detect
the first two types of faults in WWTP sensors, the third
and most complex one, collective faults, have not re-
ceived enough attention.

Fault detection methods

Apart from categorisation of faults, fault detection
methods can also be categorised into three main groups:
statistical methods, learning models, and time series
models, in order of utilisation. The most studied
methods to monitor WWTP sensor data are statistical
methods. These approaches range from a simple data
trend checking using the Mann–Kendall test to statisti-
cal process control methods which track process vari-
ables of interest over time using statistical control charts.
These charts can be univariate such as Shewhart charts,
cumulative sum charts, and exponentially weighted
moving average or multivariate methods based on prin-
cipal component analysis (PCA) (Garcıa-Alvarez 2009;
Padhee et al. 2012) and Kernel PCA (Cheng et al. 2010;
Deng and Tian 2013).

The approaches in the second category, learning
models, consider fault detection as a two-class classifi-
cation problem. Fuzzy classification (Grieu et al. 2001),
support vector machines (Fan et al. 2004), random for-
ests (Zhou et al. 2019, b) and neural networks (Hamed
et al. 2004; Grieu et al. 2006; Du et al. 2018) are some of
the most studied methods in this category. There have
been several studies on the comparison of statistical and
learning methods on wastewater sensor data (Oliveira-
Esquerre et al. 2004; Jin and Englande Jr 2006;
Corominas et al. 2018). Neural networks such as
multi-layer perception, self-organizing maps, radial ba-
ses functions and functional-link neural networks are the
most successful learning methods in fault detection of
WWTP data (Maier and Dandy 2000).

Both the above categories can successfully capture
the individual faults and contextual anomalies. Howev-
er, these methods cannot accurately detect complex
temporal patterns in collective faults. Therefore, time
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series modelling methods like the autoregressive inte-
grated moving average (ARIMA) (Xiao et al. 2017) and
time delay neural networks (TDNN) (Dellana and West
2009) were introduced to capture temporal patterns in
WWTP data. ARIMA is a univariate linear method that
predicts the next data value using the previous data
sequence. Subsequently, a conventional control chart is
used to plot the prediction error and decide on the
normality of the data. In contrast, TDNN is a multivar-
iate neural network with a short-term memory structure,
which receives segmented windows of data in time and
models non-linear time dependencies of the signals
(Waibel 1989). A comparison between linear ARIMA
and TDNN is presented in Dellana and West (2009)
using eight artificial datasets, in which a clear advantage
of TDNN over ARIMA emerges. However, a shortcom-
ing of TDNN is its dependency on the size of the
window to segment the data. The larger the window
size, the higher the dimensions of the network and its
parameters become. On the other hand, a small window
size might not cover all the important information de-
scribing the system dynamics.

The proposed approach

Recently, deep recurrent neural networks (RNN) such as
long short-term memory networks (LSTM) have shown
breakthrough results over state-of-the-art machine-
learning methods in many applications with non-linear
temporal data, including robotics, high-energy physics
and computational geometry (Goodfellow et al. 2016).
These methods can successfully engineer appropriate
long-term temporal dependencies and variable length
features, significantly lessening the need to pre-process
data with respect to traditional machine-learning
methods or statistical approaches. It is the ability to
capture the long-term dependencies that make LSTM
networks particularity fitting for the problem at hand.

Although there is enormous scope for the possible
applications of deep neural networks in the management
of WWTPs, very few studies (Zhang et al. 2017, 2018)
have been devoted to this topic and none have addressed
fault detection problems, despite the potential of these
methods, as highlighted by Sun and Scanlon (2019) in
their recent review. This is surprising, considering that
WWTP operators have vast streams of data to hand
(Corominas et al. 2018), while deep neural networks
typically provide the highest performance with vast
amounts of data. As such, potentially valuable

information remains locked in databases, rightfully de-
scribed as "data graveyards" (Corominas et al. 2018),
unexploited and unable to be processed in timely fash-
ion (Yoo et al. 2008).

Main contribution

This work is the first to evaluate a fully automatic fault
detectionmethod using a LSTMnetwork, which learns the
relevant features in WWTP sensor data without manual
intervention. More specifically, a stacked LSTM network
is used to detect collective faults in wastewater sensor data
at runtime. While there have been other works on fault
detection methods, such as using multiparametric pro-
gramming (Che Mid and Dua 2018), fuzzy neural net-
works (Honggui et al. 2014), and PCA (Sanchez-
Fernández et al. 2015; Chen et al. 2016; Carlsson and
Zambrano 2016), they all rely on the manual selection of
the relevant input features for the corresponding algo-
rithms, typically carried out by the domain expert. This
contrasts with the proposed method whereby the LSTM
network automatically learns relevant features, conse-
quently reducing domain experts’ time and providing su-
perior fault performance detection. The performance of the
proposed approach has been evaluated on a real-world
WWTP dataset gathered in the Valdobbiadene wastewater
treatment plant in Northern Italy. The dataset contains
sensor data spanning a year, where 12 sensors (including
chemical and operational sensors) have been continuously
sampled every minute. Analysis of the resulting dataset of
over 5.1 million data samples has shown that a stacked
LSTM network outperforms all other methods in almost
every measure, achieving a correct identification of faults
(recall) of over 92%. Identifying faults in a timely manner
and with high precision will enable increased efficiency in
the management of WWTPs, especially in terms of opti-
mizing energy use and increasing treatment effectiveness.

The remainder of this paper is organized as follows:
the proposed architecture and the LSTM unit are de-
scribed in the following section. Next, the experimental
results are presented, while the main conclusions are
described in the final section.

Methods

The main objective of the proposed method is to detect
collective faults in the WWTP sensor data, considering
multivariate, non-linear and temporal behaviour of this
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data. LSTM-based methods have shown breakthrough
results in dealing with temporal data, such as audio,
video, and general time series data. These neural net-
works can model both long-term and short-term corre-
lations in a multivariate data sequence. This section
briefly outlines the structure of LSTM nodes along with
the architecture of the proposed neural network.

LSTM

Hochreiter and Schmidhuber (1997) first introduced
LSTM as a powerful RNN for time series prediction.
Basically, a RNN extracts historical context of the input
using a memory cell. The general formulation of a RNN
with xt and ht as input at time t and hidden state or
memory at time t, respectively, is presented in Eq. 1:

ht ¼ σ Whht−1 þWxxt þ b
� � ð1Þ

whereWh,Wx, and b are the weights of the hidden state,
weights of the input and weights of the bias, respective-
ly, in which all of them are learned through
backpropagation through time. It seems that this ap-
proach is also good enough for learning long-term se-
quences but Hochreiter and Schmidhuber (1997) proved
it wrong both theoretically and practically due to its
exponentially decaying error. Consequently, they of-
fered a solution by adding internal contextual state cells
which are able to learn when and what to memorize or to
forget. To do so, instead of one cell state, they use two
cell states, a memory cell, C, and a hidden cell, H.
Furthermore, three gates are introduced; I to process
the input and select the addition to the cell state, F to
remove unwanted information from cell state, and O to
extract the output from what stored in cell state. The
LSTM formulation given X as input is provided in Eq. 2:

I ¼ σ xtUI þ st−1WI� �

F ¼ σ xtU f þ st−1W f� �

O ¼ σ xtUo þ st−1Woð Þ
G ¼ tanh xtUg þ st−1Wgð Þ
ct ¼ ct−1∘F þ G∘I
st ¼ tanh ctð Þ∘O
y ¼ softmax Vstð Þ

ð2Þ

where W and U are the weights and the biases that
should be learned, and ∘ implies the elementwise mul-
tiplication. The overall schema of a RNN unit is com-
pared to LSTM in Fig. 1.

Overall framework

The overall view of the proposed system architecture is
presented in Fig. 2. The data are gathered from the
sensors in the corresponding WWTP to be further proc-
essed. Several challenges have been encountered during
processing of the data, which are outlined in the next
section, followed by a detailed description of the neural
network architecture.

Challenges in data processing

Sensor data typically have several challenges that must
be addressed before using them in a learning system.
The first challenge is the existence of missing values in
the data. Poor connection, sensor failures, or fading
signal strength, are some of the causes. There are a
number of techniques in the literature of time series data
to deal with missing values, such as simply ignoring the
whole data point with a missing value, filling it with
statistically related data, or using more complicated
methods to estimate the missing value. Since the ongo-
ing research is focused on real-time fault detection, this
work follows a less computationally complex approach
in which the features with more than 90% of missing
values are ignored, while other missing values are filled
with the last known value.

The other challenge addressed by this work is
finding a suitable size of windows used as sam-
ples. Sensor data are a continuous time series
where the data at each time step are related to
the previous values in time. This characteristic of
the time series data leads the solution into a re-
cursive approach where a window of data is proc-
essed to understand each time step. The window
size can greatly influence the performance of the
algorithm and therefore should be chosen carefully.
A small window can miss the longer relationships
and large windows can dampen the effect of the
short-term relationships. This work addresses this
problem using LSTM units which receive a rela-
tively large window of data and automatically
learn the effective windows of the problem at hand
using training data. As mentioned earlier, LSTM
units leverage their input and forget gates in order
to control when and what to learn and to forget.
Therefore, in the case of a large window, the unit
learns when to replace the old and useless infor-
mation with the new ones.
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Neural network architecture

As shown in Fig. 2, the proposed method consists of
stacked LSTM layers for feature extraction and a
Softmax layer for classification. The increase in the
depth of a neural network results in more abstract

features and is commonly attributed as the reason for
success in deep learning methods (Hermans and
Schrauwen 2013). This will allow the network to pro-
cess the data in different time scales.

Considering the output of the pre-processing step in
time t as X = {X1,X2,...,Xt} where each element Xt ∈ Rd is

Fig. 1 The general schema of a
RNN unit versus a LSTM one
(adapted from Olah 2015)

Fig. 2 The overall view of the architecture and the proposed
method. The data are gathered from the WWTP sensors and pre-
processed. The data from each sensor are considered a feature in
the dataset and the value in each time step is a sample record.

These are fed into a multi-layer LSTM network to extract the
important features. Finally, the classification layer is used to cate-
gorize the data, ether faulty or normal
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a d dimensional vector as X t ¼ xt1; x
t
2;…; xtd

� �
which

contains the values from different sensors at time t. The
input layer has one unit for each dimension which is fed
to the stacked layers of LSTM. In each layer, the unrolled
LSTM blocks through time are shown in Fig. 2. Each
LSTM block receives the vector Xt and processes it with
several fully connected hidden units inside it. Note that
each LSTM layer is succeeded by batch normalization,
rectified linear unit activation and dropout layers.

The data flow in the LSTM layers through time, and
the output is a set of carefully extracted features which is
given to a softmax classification layer. The output layer
has one unit which classifies whether or not the data
sample is faulty.

Results and discussion

This section outlines the evaluation of the data and their
characteristics. Three different models are applied to the
dataset including the proposed method. The models’
parameters and comparative results are also presented.

Data and labelling

Valdobbiadene is a 10,000 population equivalent (PE)-
sized WWTP located in Treviso province, Italy. Being in
the region where Prosecco wine is produced, there is a
significant increase of organic mass during the harvest
period (late August to early October) reaching 13,000
PE. As such, the aim was to capture not only daily and
seasonal variations (typical of WWTP operation) but also
other variations that cause significant shifts in plant load.
Consequently, the dataset includes also these load shifts
that allowed us to investigate whether the proposed meth-
od can capture atypical variations. In this process, data
from 12 different sensors (both chemical and operational
sensors), including ammonia, have been collected from 20
January to 20 December 2017 at 1-min intervals. In total,
there are 438.181 values for each sensor, resulting in over
5.1 million data points (see Table 1).

The data were labelled by an expert to classify nor-
mal and faulty data points. The classification rules were
as follows: with the increase in the level of ammonia, the
oxygen is released; consequently, the ammonia level
decreases, and the oxygen flow is stopped. This cycle
is repeated through time. The fault occurs when the
ammonia level does not decrease although oxygen is

released. An example of normal and faulty behaviour of
the data is shown in Fig. 3a and b, respectively, where
the levels of ammonia and oxygen are shown.

Descriptions of all the sensors (chemical as well as
operational) are presented in Table 2 along with the Spear-
man correlation of each sensor data with the labels (normal
or fault). Regardless of the sign, a correlation value shows
the strength of the association between the variables in
question. While ‘AUS’ shows a moderate relationship to
the label, the other features show insignificant relationships
with the label and are not individually sufficiently discrim-
inative. Therefore, a multivariate detection algorithm is a
necessity to detect these faults which would exclude most
traditional univariate statistical methods.

To help with the analysis of ammonia, several statisti-
cal measures have been extracted from this feature, such
as mean, maximum, minimum, variance and standard
deviation, which increase the total number of features to
16. The data are segmented to a maximum window size
to create the sequences for the LSTM neural network.
The LSTM network would learn the proper amount of
information from this window. The larger the window
size, the higher the dimensions of the network and its
parameters would become. On the other hand, small
windows might not cover all the important information
of the system dynamics. Therefore, the size of the win-
dow is considered as a hyperparameter for the model and
a grid search is applied to find the optimal value which
was found to be 60 min. The samples with at least 10 min
of faults are labelled as faults and the rest of the data are
labelled as normal. Of the data points, 70% are consid-
ered as the training set and the rest are held for the test set.
The statistics of the dataset are summarized in Table 1.

Experiments and evaluation

Four sets of experiments are reported in this section,
comparing traditional methods with the proposed meth-
od. First, a basic statistical analysis is carried out on the
data. Next, ARIMA is applied to the dataset. Then, a

Table 1 Summary of dataset

Instances Sensor data Percent

Normal 376,190 4,514,280 88.5%

Faults 48,816 585,792 11.5%

Total 425,006 5,100,072 100%
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learning model using PCA and SVM is also evaluated.
The results of the proposed LSTM-based method are
presented in the last section. All the settings and param-
eters are provided in each section. The experiments are
implemented in the Python programming language
using Keras (Chollet et al. 2015) and TensorFlow
(Abadi et al. 2015), two open-source neural network
libraries designed to build models based on deep neural
networks. Keras offers a high-level set of abstractions
that make it easier to develop deep learning models and
interfaces, with TensorFlow as a backend to implement
and execute the models.

Variance

Since the faults occur in direct relation to the ammonia
level, it is only logical to first analyse this type of sensor

data statistically. As the type of fault is known to be
collective, the properties of its distribution (mean and
variance) change in case of faults. Analysing the mean
of the data from the ammonia sensors shows that the
mean of the data in both normal and fault events are the
same. On the other hand, the variance has an apparent
difference in these two classes of data. To analyse the
variance, the segmented 60 min of windows are used to
calculate the variances and a threshold is set to catego-
rize the window as normal or faulty. The threshold is
considered as a hyperparameter and is set based on the
training data using a grid search. The optimal value was
found to be 0.01. The results of this method are shown
in Table 4 where it is compared to the other methods.

ARIMA

ARIMA is a statistical univariate model that learns the
normal sequence of a time series to predict its next value
in time. This algorithm is widely used as a time series
forecastingmethod (Boyd et al. 2019; Zhang et al. 2019)
and a general anomaly detection algorithm for time
series data. The ability to detect collective faults on
sensor data (Tron et al. 2018; Yaacob et al. 2010; Pena
et al. 2013) is tested.

ARIMA is a general form of moving average which
is applicable only on stationary sequences. Time series
data are stationary if its statistical properties such as
mean and variance remain steady over time. ARIMA
relies on the idea that a non-stationary data can become
stationary by differencing. In particular, ARIMA as-
sumes that each data point in a time series can be derived
using a polynomial combination of a number p, of its
past values which are differenced d times, plus a number

or(a) Normal behaviour (b) Faulty behaviour

Fig. 3 A sample of faulty and normal data

Table 2 Description of variables and Spearman correlation with
the label (normal or faulty)

Variable Description Correlation

AOS Blower frequency 0.24

AUS Blower operational mode −0.52
DOPLC PLC operating parameters −0.13
DOS Blower gear status 0.05

FRS Operating frequency of the blower 0.17

MAS Blower run signal 0.19

NH4 Ammonia measurement 0.03

NO3 Nitrates measurement 0.24

OX Oxygen measurement 0.25

SP Oxygen set-point −0.1
Temp Tank temperature 0.15
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q of error variables and a constant c, as in Eq. 3:

Y t ¼ φ1ydt−1 þ…þ φpydt−p þ θ1et−1 þ…

þ θqet−q þ c ð3Þ

Therefore, this algorithm can be summarized as
ARIMA(p,d,q) with three parameters: the autoregressive
parameter (p), the number of differencing steps (d), and
the moving average parameter (q). The algorithm should
be trained on the data to learn the coefficients, φ and θ.

Since ARIMA is univariate, the data from an ammo-
nia sensor which includes both faults and normal values
is set as its input. Next, the predicted value is compared
with the previously seen value and, in the case of mean-
ingful difference, the occurrence of anomalies is
reported.

To set these parameters, the auto correlation function
of the data and its first difference are plotted in Fig. 4a
and b. The plots show a strong correlation between the
time series data points and no correlation in the
differenced ones. Therefore, the parameter d is set to 1.

For other parameters, p and q, a grid search has been
used to estimate their best values among (0,10). This
method searches thorough all possible combinations of
p and q in order to obtain minimum Akaike for infor-
mation criterion. The best parameters are derived as
ARIMA (4,1,4) and the model is trained on normal data
to set the coefficient for predicting future values. In
other words, to predict the next value in the sequence
of data, the data from 4 previous steps are integrated
once and multiplied by the learned coefficients in

addition to 4 error terms with their learned coefficients
which are all summed.

Next, the ARIMA model is tested on the test data
which contain both normal data and faults and the
overall root-mean-square error (RMSE) between the
predictions and the real data is 0.07. This result is very
good in terms of prediction, but it does not help on
detecting faults. The RMSE is even lower in a root-
mean-square error case of faulty data and the prediction
is too exact. Consequently, it is not possible to detect the
collective fault behaviour with the ARIMAmodel in the
test data. Themain reason is that ARIMA considers only
a short-term memory of the data and does not learn the
longer patterns which are a significant factor in detecting
collective faults.

PCA and SVM

The fault detection problem can be interpreted as a
binary classification of the normal data and the faults.
Support vector machines (SVM) are powerful binary
classifiers which can be adopted as a time series classi-
fication method when combined with a feature extrac-
tion approach (George 2012). SVM classifiers simulta-
neously maximize the performance of the machine,
while minimizing the complexity of the model. A vari-
ant of this method, support vector regressor, is success-
fully applied to forecast wastewater quality indicators
(Granata et al. 2017). Also, SVM and ARIMA have
been compared in predicting the influent flow rate of a
sewage treatment plant and SVM showed lower error
rates (Ansari et al. 2018).

(a) The Auto Correlation Function (ACF) of the data (b) The Auto Correlation Function (ACF) of the data after differencing

Fig. 4 The auto correlation function of the data and its first difference to set the parameters of ARIMA
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As previously mentioned, the data samples include a
window of 60 min with 16 features for each minute, and
consequently the training vectors have more than 1000
feature each. To reduce the feature space, the PCA (Bo
and Wu 2009; Smith 2002) method has been applied to
the data and the data mapped to lower dimensions with
regard to their principal components with the maximum
variances. Using PCA improves the accuracy while
reducing the complexity of the SVM model. Further-
more, the unbalanced nature of the data is addressed
through the use of weighted SVM.

To evaluate the performance, three measures are
calculated for each class: precision, recall, and F1 score.
These measures are defined in Eq. 4:

Precision ¼ True Positive
True Positiveþ False Positive

Recall ¼
True Positive

True Positiveþ False Negative
F1 ¼ 2� Precision� Recall

Precisionþ Recall

ð4Þ
Since the data are highly unbalanced with 11% faulty

data and 89% normal, the learning algorithm is penal-
ized to increase the cost of mistakes in the minority class
(fault detection). The final results are presented in the
next section, along with the proposed method in Table 4
(below).

LSTM

As a last step, the proposed LSTMnetwork is trained and
tested on pre-processed data. As explained in the previ-
ous section, the proposed method has several
hyperparameters, which have been chosen according to
the resulted prediction error on the validation set. Ran-
dom search is used to find the best value for the
hyperparameters to achieve the lowest prediction error
among the following ranges: number of hidden layers, h
∈ {1,2,3,4,5,6}, number of LSTM units in each layer, u ∈
{20,40,60,80,100,120} and the dropout factor, d ∈
{0.2,0.4,0.6,0.8}. The best combination is found to be
4 layers, 60 units and 0.2 of dropout. Also, the rectified
linear unit is used as the nonlinear activation function. At
each time step, several samples, b, are grouped as a batch
and fed into the network. Using batch training improves
both the learning accuracy and speed. A summary of the
network architecture and the number of its learning
parameters are presented in Table 3. For each layer, the
size of the output matrix is shown as a matrix shape
where b represents the batch size. The input layer

receives b samples of shape 60 × 16 and passes it to the
next LSTM layer with 60 hidden units and 60 time steps.

To the train the network, the Adam stochastic
optimiser (Kingma and Ba 2014) is used. The batch size
is set to 128 examples and the network is trained for 20
epochs using back propagation through time with early
stopping on the training set. The trained model is ap-
plied on the test data and Table 4 illustrates the results.

Discussion

High detection performance of the tested models, shown
in Table 4, highlights the power of machine-learning
methods in automatic fault detection of real-world
WWTP data. Since the data are highly unbalanced, accu-
racy is not the most appropriate measure. Instead, preci-
sion, as the classifier’s exactness, recall, as the classifier’s
completeness, and F1-score, as the balance between pre-
cision and recall, are considered more accountable. Fur-

Table 3 The number of learning parameters of the proposed
network in each layer and the total (b represents the batch size)

Layer Output shape # parameters

Input (b,60,16) 0

LSTM (b,60,60) 18,240

LSTM (b,60,60) 29,040

LSTM (b,60,60) 29,040

LSTM (b,60,60) 29,040

Softmax (b,2) 122

Total 105,482

Table 4 Results comparing the proposed method (LSTM) with
statistical analysis (Variance) and traditional machine learning
methods (PCA-SVM)

Method Variance PCA-SVM LSTM

Accuracy 0.9325 0.9300 0.9652

F1-score Average 0.8575 0.8667 0.9267

Fault 0.7542 0.7748 0.8736

Precision Average 0.8390 0.8247 0.9038

Fault 0.7067 0.6586 0.8167

Recall Average 0.8796 0.8667 0.9267

Fault 0.8086 0.9409 0.9391

The best performance of each method on accuracy, F1-score,
precision and recall are shown in bold
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thermore, the objective of this work is tominimizemissed
faults (false negatives) at the expense of a slight increase
in false alarms (false positives). Therefore, the measures
on each class are presented separately, highlighting re-
sults pertaining to fault detection.

The results show that the LSTM network proposed
provides superior performance with respect to the other
methods considered in this work. This is because LSTM
has a high capacity to model complex dependencies
between temporal data. Other methods are not well
equipped to handle multi-variate time series data and
effectively model their dependencies. This ability plays
a significant role in detecting cumulative faults which
have a different pattern in comparison to the typical
operational patterns. Furthermore, LSTM is relatively
robust to noise and other outliers, which is very common
in real-life time series data.

There is a continuous push to improve the purification
performance of WWTPs while at the same time decreas-
ing energy consumption. This has resulted in increased
automation of the operation of these plants and, conse-
quently, an increase in the number of measurement sen-
sors. These sensors are being increasingly used, not only
for the environmental monitoring but they are also be-
coming an important tool in the management of the
plants, and the detection of sensor faults is essential in
ensuring correct operation of the plant. Furthermore,
sensor failure is difficult to be manually detected by the
human operator, especially when dealing with large
plants with a multitude of sensors or small unstaffed
plants. While the current systems are very efficient, there
is a clear need to develop methods that can reliably detect
sensor faults and provide ample time to the plant opera-
tors, such that environmental damage is limited when
faults occur. A system such as the work presented in this
paper is the first step towards implementing a fully auto-
mated fault detection system that can address the issues
arising from automatic management of WWTPs.

Conclusions

WWTPs are key infrastructure for the protection of the
environment. However, being a major energy consumer,
it is particularly important to ensure that these plants are
operated in a manner that optimizes treatment efficiency
and energy consumption. One important aspect is the
detection and management of faults in a timely manner.
The results presented in this paper have shown that there

is a vast potential in using deep neural networks in
managing WWTP faults, and this work is only the first
step in this direction. The proposed method not only
outperformed traditional methods but the performance
achieved a fault detection (recall) of over 92% which
will enable a new class of WWTP monitoring and
management that requires very little human supervision.
In addition, these methods allow integration with envi-
ronmental decision support systems that enable
WWTPs to maintain a high performance and low emis-
sions, even in response to unexpected events, where
faults can be acted upon in a timely manner with min-
imal environmental impact. It is expected that the work
will further encourage the use of deep neural networks,
not only in WWTP management but also in the general
field of environmental protection.
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