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Abstract

Technological advancements, including advancements in the medical field have drastically
improved our quality of life, thus pushing life expectancy increasingly higher. This has also had the
effect of increasing the number of elderly population. More than ever, health-care institutions must
now care for a large number of elderly patients, which is one of the contributing factors in the rising
health-care costs. Rising costs have prompted hospitals and other health-care institutions to seek
various cost-cutting measures in order to remain competitive. One avenue being explored lies in the
technological advancements that can make hospital working environments much more efficient.
Various communication technologies, mobile computing devices, micro-embedded devices and
sensors have the ability to support medical staff efficiency and improve health-care systems. In
particular, one promising application of these technologies is towards deducing medical staff
activities. Having this continuous knowledge about health-care staff activities can provide medical
staff with crucial information of particular patients, interconnect with other supporting applications
in a seamless manner (e.g. a doctor diagnosing a patient can automatically be sent the patient’s lab
report from the pathologist), a clear picture of the time utilisation of doctors and nurses and also
enable remote virtual collaboration between activities, thus creating a strong base for establishment
of an efficient collaborative environment. In this paper, we describe our activity recognition system
that in conjunction with our efficiency mechanism has the potential to cut down health-care costs by
making the working environments more efficient. Initially, we outline the activity recognition process
that has the ability to infer user activities based on the self-organisation of surrounding objects that
user may manipulate. We then use the activity recognition information to enhance virtual
collaboration in order to improve overall efficiency of tasks within a hospital environment. We have
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analysed a number of medical staff activities to guide our simulation setup. Our results show an
accurate activity recognition process for individual users with respect to their behaviour. At the same
time we support remote virtual collaboration through tasks allocation process between doctors and
nurses with results showing maximum efficiency within the resource constraints.

© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

High availability and small form factor of wireless devices has given rise to a vast
number of applications within Pervasive Computing (Weiser, 1991) research. The ultimate
goal of Pervasive Computing is to drastically improve user’s life by supporting aspects of
their lifestyle through an invisible computing environment. Monitoring user behaviour can
assist the user in a vast number of day-to-day activities from food preparation up to
various training regimes, encouraging users to live a healthy lifestyle. While, leading a
healthy lifestyle is an important factor to a healthy life, conditions such as chronic illnesses
or accidents still occur, requiring medical attention and care. Providing patient care in
recent years has left medical institutions with an ever increasing challenge, mainly due to
the rising costs of health-care. Demographic changes are attributed as one of the leading
contributors, putting health-care institutions under strain. Increased life expectancy has led
to the median age being pushed higher, thus resulting in an increased number of senior
citizens. In general, senior citizens are much more vulnerable to chronic diseases than the
rest of the population, hence requiring medical care more often. In the US, the proportion
of the population greater than 65 is projected to increase from 12.4% in 2000 to 19.6% in
2030 which translates into an estimated 71 million elderly by 2030 (US.C.B., 2007). This
increase will have a direct impact in health-care institutions, specifically considering the
fact that the health-care costs per capita for persons over 65 years are three to five times
greater in comparison with the health-care costs of persons under 65 (Jacobzone and
Oxley, 2002). To address the rising costs, the public financing of long-term care for the
period 2000-2020 is projected to increase 20-21% in the UK and the US, while this figure
in Japan is estimated to be 102% (JP and DW, 2000).

When considering above figures it becomes evident that medical institutions are actively
seeking cost-cutting solutions. One avenue being explored is in the latest technological
advances, specifically Pervasive/Ubiquitous Computing (Weiser, 1991). Pervasive comput-
ing has already given rise to a number of novel medical applications. Tele-medicine, real-
time telemetry, network-based haptic devices, and remote surgery are just some of the
applications enabled by advances in Pervasive Computing. Doctor-centric applications are
also in the research focus, enabling doctors to conduct their activities more efficiently. For
example, the embedded computing environment can intelligently respond and adapt to
changes in doctor’s activities. Such adaptations range from simple phone call redirection,
for example when the doctor is engaged in a crucial activity such as surgery, up to
advanced applications that can display current patient state, medical history and any other
information relevant to the doctor while the doctor is engaged in patient examination.
Clearly, the enabling platform for these applications is a flexible and robust activity



630 V. Osmani et al. | Journal of Network and Computer Applications 31 (2008) 628—655

recognition system that has the ability to continuously infer medical staff activities with a
high accuracy.

Activity recognition is a research strand of Pervasive Computing that is concerned with
the ability of computing devices to monitor the user and the environment and infer user’s
activities based on events triggered by user’s actions. Having continuous knowledge of
activities of medical staff, the health-care institutions can greatly enhance hospital
processes and utilisation of their staff. This has the potential to cut down associated costs
by increasing the efficiency of the working environments as well as support various other
applications and information relevant to the current user’s activity. There have been a
number of studies (Centeno et al., 2003; Martinez-Garcia and Meéndez-Olague, 2003;
Wijewickrama and Takakuwa, 2006) with the objective of improving collaboration
efficiency within various departments of health-care institutions such as emergency room
or surgery theatre. Typically, these studies manually observe processes within the hospital,
where activities and allocation of doctors and nurses and other information are fed to a
simulation engine such as (Corporation, 2007; CreateASoft, 2007) in order to correct
inefficiencies and increase productivity.

However, manual data collection typically involves researchers spending a considerable
amount of time and effort to record the relevant data. The amount of labour required to
aggregate the data renders the manual technique quite inefficient. More importantly,
however, efficiency is not a static measure and tends to decrease over time since it is
dictated by the dynamic behaviour of the medical staff. Therefore, the manual technique
becomes unfeasible to often collect staff activity collaboration data in order to maintain
high efficiency.

With these issues in mind, we focus this paper on our activity recognition system and its
applicability to the health-care domain. We seek to study the interaction between medical
staff through the inference of their activities and provide means to make this interaction
more effective. Our solution is unique in that it creates a synergy between the activity
recognition mechanism that provides information about activities of the health-care staff
and the optimisation process that uses this information to enable an efficient collaborative
environment. Also, having an automated solution allows for a continual adaptation to the
behaviour dynamics of the medical staff, which ultimately provides a maximum
collaboration efficiency that cannot be achieved or is unfeasible with the manual solutions
that we review in the next section. Our case study is focused on the recognition of activities
of primarily nurses and doctors and we make the point that utilising information about
activities of the medical staff can enhance their tasks and applications and at the same time
support remote doctor—nurse collaboration, by making this process more efficient.

The rest of this paper is organised as follows. We first review the most relevant work in
the two main focus areas, namely activity recognition and collaborative health-care. Then
in Section 3 we present our activity inference architecture, the description of the main
components and their interaction. Section 4 deals with collaborative activities and how
they are supported by our activity recognition architecture, while Section 5 presents the
simulation results of our work. Section 6 draws the main conclusions.

2. Related work

Pervasive health-care paradigm (Bardram et al., 2006; Saranummi et al., 2006;
Varshney, 2003) has recently emerged as a distinct research strand within Pervasive
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Computing. There are a number of aspects in the focus of Pervasive health-care, such as
improving the general health (Maitland et al., 2006; Oliver and Kreger-stickles, 2006),
monitoring patients (Bouchard et al., 2007; Karl et al., 2006; LeBellego et al., 2006;
Osmani et al., 2007), enabling an efficient schedule of the health-care staff (Centeno et al.,
2003; Driver et al., 2006) or even recognising their activities (Bardram and Christensen,
2007; Favela et al., 2006). While Pervasive health-care encapsulates a number of
application domains, our focus is specifically on two aspects: (i) activity recognition
of medical staff which provides continuous information about the current activities of
doctors and nurses and (i1) utilising this information to provide an efficient collaboration
process between doctors and nurses, allowing medical staff to utilise their time in the most
efficient manner and collaborate in a remote virtual environment while being physically
distant. Therefore, in the next section, we review and critique the most relevant activity
recognition systems and then we describe the ongoing research into enabling efficient
collaborative environments in the health-care domain.

2.1. Activity recognition

The ability to recognise human activities is a key factor if computing systems are to
interact seamlessly with the user’s environment. Research into enabling computer systems
to recognise human activities has emerged as an application domain of computer vision
research. The strong interest in this domain has been motivated by the desire to improve
machine to human interaction that offers many promising applications (Gavrila, 1999).

However, the more recent trends in human activity recognition have witnessed the
appearance of another strand in this domain. Technological advancements and steady
form-factor miniaturisation have enabled dense instrumentation of our living environments
with a large variety of multimodal sensors and actuators. Such environments possess the
ability to monitor user’s behaviour and provide information pertaining to user’s actions,
which is then filtered, processed and composed in order to infer user’s activities. As such
human activity recognition can be divided into two major approaches, namely machine-
vision-based recognition and sensor-based recognition. Of course, this division is by no
means strict and hybrid approaches also exist, for example, Oliver and Horvitz (2005).

The main focus of our paper though is on the latter, sensor-based approach. Therefore,
we now review the most relevant systems in this domain.

Guralnik and Haigh (2002) describe the approach of collected data from a set of living
environments instrumented with a number of motion detection sensors. The captured
information is fed to statistical machine learning algorithms that are used to extract the
behaviour patterns of the house occupants. However, reliance solely on the motion sensors
is insufficient to deduce activities with high accuracy and also makes it very difficult to
understand specific user behaviours. In Kern et al. (2003), authors describe a hardware
platform equipped with three-dimensional accelerometers. However, results reported show
only a small number of simple activities that are recognised including sitting, standing,
walking, handshaking, which may be attributed to using only one type of sensors. The
framework is heavily centralised with no support for personalisation to suit specific user
behaviour. Bao and Intille (2004) also propose recognising human activities based on
accelerometers. Authors report recognition accuracy up to 95%. However, their approach
limits the number of activities the system can recognise. Another initiative in activity
inference comes from University of Aarhus in Denmark (Bardram and Christensen, 2004).
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Although authors describe the issues that surround the activity inference, with a special
focus on health-care, inferring user’s activity based on the set of artefacts and other context
information was found to be difficult, since activities are triggered by sources that are too
complex to capture.

University of Washington and Intel Research have devised an activity inference engine
based on the ‘Invisible Man’ theory they have developed which states that activities are well
characterised by the objects that are manipulated during their performance (Wyatt et al.,
2005). An RFID reader mounted on hand glove records information about objects being
manipulated by a user and this information is fed to an activity inference engine. A model
of activities is obtained through web data mining techniques especially mining the Aow-to
websites. While the authors report positive results, there are two disadvantages to this
approach: the inconvenience of wearing a glove and the centralised architecture design.
While the first problem can be somewhat alleviated considering the technology trends in
miniaturisation (authors report working on an RFID bracelet to replace the glove; Wang
et al., 2007) the second problem poses a greater challenge for scalability. While this issue
may not be essential in home environments, a scalable architecture becomes critical, when
considering workplace domains, for example, hospitals where number of users as well as
devices and sensors may range in the order of thousands.

Overall the systems presented in this section lack one or more features to infer a large
number of user’s activities. More importantly the majority of these systems rely on a single
technology that effectively decreases the richness of information generated as a result of
user actions and behaviour, which limits the number of activities that can be recognised.
Our design aims to alleviate these issues by employing a number of novel concepts that are
mapped to various components of the architecture.

2.2. Collaborative health-care

The concept of collaborative health-care environments has gained increased attention,
particularly due to the potential they offer in delivering quality care and lower the costs by
increasing efficiency. Cost-cutting measures are necessary if the hospitals are to remain
competitive in light of increased demand for resources. A number of research projects have
studied ways to improve efficiency amongst medical staff. For example, Martinez-Garcia
and Meéndez-Olague (2003) argues that activities being performed and their associated
information, such as where, when and how these activities are performed have to be
analysed in order to provide a complete analysis of the medical staff with patient
interaction process. However, a major issue is that the interaction has to be manually
observed and also entered into the simulation tool, so that the interaction process can be
made more efficient. By changing various parameters through the simulation tools, the
authors report an increase of 20% of patients provided with medical attention. Authors in
Wijewickrama and Takakuwa (2006) aim to reduce the weighted average patient waiting
time by simulating the patient care provisioning process. The data collection was
performed manually through interviewing doctors, nurses and also some data was
collected through observation. Since this was a modern hospital, some data was already
available, which primarily was data pertaining to patient appointment details and check in
times. The simulation and optimisation developed by the authors could greatly benefit
from an automatic activity recognition, especially in recognition of activities of doctors
while engaged with patients. Through application of optimisation in considering a number
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of scenarios using the collected data, the authors report 59.95% reduction in the weighed
average patient waiting time. However, a change in the simulation parameters, for example
introduction of new treatments, would require the pertinent data to be collected manually
again. Another effort that aims to increase efficiency of health-care institutions by
optimising the staff scheduling is described in Centeno et al. (2003). Authors report a 28%
improvement over the existing schedule obtained through application of Integer Linear
Programming (ILP). However, the data is entered manually and as with the previous
systems. Responding to changes requires manual effort, making the process costly.

Therefore, an activity inference system becomes essential in enabling automatic
gathering of activity information thus diminishing the effort required for the vital part
of the simulation—collaborative activities and interaction information. In the following
sections, we provide the details of how our architecture realises an accurate and robust
activity inference process and how this architecture supports remote collaborative
environments.

3. Architecture overview

Previous section critiqued some of the most relevant work in the area of activity
recognition and its application to health-care. Overall the research literature presented
lacks one or more features that present a significant barrier towards providing a holistic
approach to activity recognition. This is due to the fact that activity recognition
architectures face a set of stringent requirements in order to intelligently and efficiently
infer dynamic user behaviour with a high accuracy. Device heterogeneity is an issue that
must be considered at the onset of design. Also, reliance on a single sensing technology or
standard will have severe negative impact on interoperability with devices that a user may
own in the future. Centralised knowledge processing ultimately creates a bottleneck,
potentially weakening the system performance and in severe cases resulting as a burden
rather than a supporting tool in the user’s day-to-day goals and activities. An important
issue that has to be addressed lies in the continually changing user behaviour. Everyday
experience reveals that user behaviour patterns are not static; rather they tend to vary with
time. Therefore, mechanisms that cater for this dynamicity are essential and have to be
incorporated into the architecture design of an activity inference system. Addressing these
challenging issues becomes paramount in the system design in order to ensure a high
likelihood of user acceptance, which may ultimately determine the difference between
acceptance success and failure.

Our architecture brings the realisation of these challenges one-step closer. Our system
supports the following characteristics: (i) evaluating deduced context information that is
not limited to static sensor information but from various sensors and objects within the
living environment; (ii) context information processing in a distributed, hierarchical
manner resulting in a high level of abstraction of context information; (iii) support self-
organisation of devices into object networks that infer user activities; (iv) decentralised
user activity inference technique through the objects in the surrounding user environment;
(v) incorporating learning techniques for both existing and new users entering a domain;
and (vi) enabling remote collaborative working environments. In order to tackle these
issues we have defined a number of components comprising the activity inference
architecture, namely object networks that provide an efficient processing platform of
information generated as a result of user actions, Activity Map (AM) that acts as a



634 V. Osmani et al. | Journal of Network and Computer Applications 31 (2008) 628—655

User's Domain N\ -

______________________________ Causal 1=
Causal 2 =

Activity Map\

Causal 3 = Causal 1=
Causal 2 =

T
E
Causal 3=T
T
F

Activity
Map

T
F
T
Causal4=T
Causal 5= F
T
T
T
T

Causal 6 =
Causal 7 =
Causal 8 =

Causal 4 =
Causal 5 =

Decision
Module

Causal 9 =

Causal 1 =
Causal 2 =
Causal 3 =

Causal 4 =

Causal 5 =

Causal 6 =

Causal 7 =

EIEIEIRIEIEII

Causal 8 =

Leader Object

Activity Identifier

Application module
layer

An object
Communication path

Infrastructure layer

Activity Inference
causals

Object stack

Fig. 1. Architecture for activity recognition.

repository of user’s activities and a Decision Module (DM) that works in conjunction with
AM in order to infer user’s activities based on the events filtered through the object
network. These components are illustrated in Fig. 1.

Our aim is to create a decentralised mechanism to infer user activities. Activity inference
starts when user enters a particular location and stabilises his/her mobility, at which point
the objects surrounding the user will collectively self-organise into an object network. The
object network in conjunction with the DM will infer user’s activities by drawing out a
generic set of events that contribute to an activity from a centralised repository—the AM.
The sections that follow describe each component in detail and their functionality.

3.1. Object networks

The object networks concept has been devised on the basis of functionalities of sensor
networks that have the ability to self-organise through peer-to-peer interaction; however,
our concept is more generic in nature. Object networks extend beyond sensors and sensor
interaction; an object network is an overlay network that encapsulates various devices with
different functionalities and processing capabilities that provide crucial information
pertaining to user’s actions and environment status. This includes any artefact that may
provide information relevant to the activity inference process with a particular focus on the
objects that user may interact with (e.g. Laptops, PDAs, medical monitors, and
instruments) or just plain low processing sensors. Once the user’s location stabilises, the
objects dynamically organised into an emergent object network hierarchical structure.

Utilisation of object networks is two-fold. Firstly, object networks provide an efficient
processing platform for context information generated from low-level sensors as a result of
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user actions dictated by a specific behaviour. This is achieved through the hierarchical
structure created as a result of the self-organisation process where no centralised
control exists. Secondly, object networks significantly lessen the gap that exists between
the low-level information generated from various sensors and the ability of this
information to represent high-level events such as user’s goals or actions. This is achieved
through increasing the level of abstraction of context information whereby low-level
information is processed, filtered and composed throughout the object network
hierarchical structure. Increasing the level of abstraction of context information
directly benefits the activity inference process, since DM is shielded from the low-level
details associated with raw information generated from low-level sensors (such as
sampling, data representation, composition, filtering). This also has the added benefit
of making this process more efficient due to processing of lower volume of information
in comparison with vast amount of raw data generated from a large number of sensors.

The hierarchical processing structure is created automatically based on the local object-
to-object interaction rules. The object network ‘follows’ the user as s/he changes the
position within a domain. Such behaviour stems from the fact that user activities are highly
localised and typically involve manipulation of objects in the close proximity.

3.1.1. Object network constituents

Each element of an object network is equipped with a sensing mechanism that allows it
to discover other objects in the vicinity and query their services. This mechanism assumes
existence of communication capabilities in addition to an embedded dual-layer stack (see
Fig. 1) that houses the object logic. The stack comprises an infrastructure layer where
object sensing and discovery algorithms are contained and its primary role is the
establishment of the object network. This layer also coordinates an election process
between the elements of an object network to determine the object with the highest
capabilities—the leader object. The second layer within the stack is known as application
module layer with the main responsibility of executing dynamically loadable modules,
referred to as object roles. An object role specifies all or part of a functionality of an object
and also provides an interface to tap into this functionality. Object roles are semantically
described and are akin to services running on a device. An object is not limited to single
role and may contain a set of roles executed in parallel (especially, objects with higher
processing capabilities—e.g. PDASs).

Application module layer also includes a set of role dependency rules that determine the
dependencies of a particular role on information generated from other roles, such that
the role in question can be fulfilled. For example, in a health-care environment, a PDA
in fulfilling its ‘patient’s state’ role may be dependent on information generated from
other objects such as body worn temperature sensor, blood pressure sensor and/or heart
monitor where the PDA can automatically retrieve information from these devices when
in proximity.

However, information from other object roles has to be semantically understood in
order to be utilised. Therefore, context evaluation rules determine the semantics of the
exchanged information between the dependent roles of various objects. The context
evaluation rules in effect infer a deduction through processing and composition of the
information received from dependent roles of various objects. In the example above, the
PDA will engage the context evaluation rules to process information from dependent
object roles in order to deduce the patient’s state.
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3.1.2. Object network self-organisation

As stated above, object network constituents have the ability to self-organise in order to
create a hierarchical, tree-like structure based on the local object-to-object interaction
rules. Typically, low-level sensors will sit at the bottom of the hierarchical structure
while the leader object, chosen as a result of the election process, will be at the top (refer to
Fig. 2). The leader object’s main responsibility is to evaluate the activity of the user.

The initial structure-less object network, converges into a hierarchical structure, is based
on the consumer/provider relationships that are established on the basis of local role
dependency rules. This in turn enables creation of Context Zones depicted in Fig. 2.

Before we delve into description of Context Zones, we first describe the concept of
consumer/provider roles that steer the establishment of Context Zones.

3.1.2.1. Consumer/provider role dependencies. Prior to object network self-organisation
process taking place, the objects must select other objects in vicinity to create relationships
with, which serve as a basis for self-organisation. These relationships are specifically
established between objects’ roles and enable an object role to select a set of objects in
vicinity in order to create an overlay link with the associated roles. Creation of these
overlay links is driven by consumer/provider role dependencies.

Context Zone Overlay
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<—_ Highest level

Context Zone

Level 1 ZAP L1
Context

Context Zone

Self-organisation
of objects

Legend:

Object Role

. Leader Object Role
—

Context Zone boundary
Dependency relationship

Object

Object Network

Communication path

Fig. 2. Hierarchical Context Zone structure.
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Typically a role may be an information consumer role, information provider role or both.
The role(s) that each object can take depend on object’s processing capability and
functionality. Low-level sensors adhere to information provider roles only since sensors are
self-sufficient and typically do not require information generated elsewhere. The leader
object houses the ultimate consumer role that gathers information generated throughout
the hierarchy in order to deduce user activities. All other object network roles positioned in
between, are both consumer and provider roles to enable information flow from the lowest
level of hierarchy up to the leader object.

3.1.2.2. Role dependency establishment. A consumer role’s objective is to fulfil its
dependencies; therefore, during object network formation each consumer role broadcasts a
semantic query to other objects within a specific hop count. The query is based on the role’s
dependency rules and contains semantic description of the information required by the role so
that it can be successfully fulfilled. In the example above, the PDA engaging the ‘patient state’
role may have role dependency rules stating that this role requires information about
temperature, blood pressure and heart monitor data. In order to fulfil its role, the PDA sends
a semantically described query to other objects in the vicinity requesting roles that can
provide information about temperature, blood pressure and heart beat information for a
particular patient to respond back. If there are objects in the vicinity that house roles that can
fulfil these requirements a response is sent back. This response reaches the querying object
and a dependency relationship is established between the respective roles, i.e. the ‘patient
state’ role and the corresponding objects’ information provider roles (e.g. temperature, blood
pressure or heart monitor data roles). If no response is received the PDA will broaden its
query radius by increasing the number of hops so that the query can reach a larger number of
objects until a response is received, otherwise the role cannot be fulfilled.

3.1.2.3. Context Zones. Establishing dependency relationship between roles through the
consumer/provider relationship allows the formation of Context Zones, which are the
main ingredient in the emergence of a global hierarchical object network role structure (see
Fig. 2). The idea of Context Zones has been inspired from research work on Semantic
Overlay Networks (Crespo and Garcia-Molina, 2002; Klein et al., 2003). While, the goal of
semantic overlay networks is to closely group semantically similar services in order to
optimise routing of search queries, our aim is different. We seek to create an efficient
hierarchical object network overlay structure to enable abstraction of context information
such that this information is used in activity inference process.

Context Zones are automatically created based on object-to-object interaction, where this
interaction is governed by local role dependency rules. ““A Context Zone is created for each
consumer role and it groups together provider roles that can fulfil information requirements
of the consumer role as defined in consumer role dependency rules”. The consumer role of a
Context Zone is known as Zone Access Point (ZAP) since it contains knowledge regarding
semantic descriptions of all roles within the Context Zone. Before we delve into the formal
definition of the notion of Context Zones, we need to begin with the basic notation.

Definition 1. (Basic notation)

An object network 7 is a set of artefacts having communication capabilities such that
each artefact 0, T can exchange information with another artefact o,eT using an
underlying pre-agreed or translated protocol (indices i and j are used to distinguish
between different objects).



638 V. Osmani et al. | Journal of Network and Computer Applications 31 (2008) 628655

An object network bears a high similarity with a peer-to-peer ad-hoc network where no
network structure is imposed and each node (an object) has the capability to sense other
nodes in the close proximity and query the services (roles) they provide. An object role r¢
of an object 0,€ T is defined as
<)

0i(r, ).

Here, o, represents the object where the role is housed, top index of the role indicates
whether the role is a consumer role (C) or provider role (P) while the bottom index n
indicates a single role from the total roles N of object 0,, and is used to distinguish between
multiple roles within the same object. In our example above, the object 0, may be the PDA
having ‘patient state’ role r$ as an information consumer role.

For each consumer role, a dependency relationship d (—>) is established with one or
more provider roles as determined by the role dependency rules. The set of all provider
roles, where a dependency relationship is established, is denoted with @ and is called the
dependency set

d
0:(rS) —> @ o (0;(rl), 0551 (1Y), ..., 0k (1)) € O.

In this instance the ‘patient state’ role of the PDA will establish dependency
relationships with the respective provider roles of the body temperature, blood pressure
and heart monitor (in this case, single role objects) as defined in the ‘patient state’ role
dependency rules. Once the dependency relationship is established, the provider roles are
added to the ‘patient state’ dependency set ©.

Definition 2. (Context Zone)'

Based on the notation described above, we can now formally define the concept of
Context Zone. A Context Zone groups together object roles that can fulfil information
requirements of a consumer role. At the same time a Context Zone encompasses the
consumer role along with the provider roles from the dependency set of the consumer role.
The definition of a Context Zone Z; is as follows:

n n

Z, = (0(r$), ©) < 0,(rf) % o.

A Context Zone is represented as a tuple containing the consumer role 0;(r¢) and a set of
roles contained in ® with which a dependency relationship has been established.

Context Zone is complete when the dependency set of the consumer role has been
satisfied, in other words the dependency set ® contains all the roles specified by the
consumer role dependency rules. For example, the ‘patient state’ role will establish a
Context Zone with its dependencies, namely roles that provide body temperature, blood
pressure and heart monitor information.

At the same time, each role of an object can take the status as the ZAP and is denoted?
as (see also Fig. 2)

0,(r6) L Z,.

'In what follows, we use the ® symbol to denote “such that” which corresponds with Z formal specification
language conventions (Spivey, 1992).
>The L symbol is not used in the mathematical context.
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Following our example, the ZAP in this instance is the consumer role, namely the
‘patient state’ role since it contains information about other roles (temperature, blood
pressure and heart monitor roles) within the Context Zone.

Creation of multiple Context Zones results in an emergent hierarchical object network
structure, where the highest position in the hierarchy is taken by the leader object. The ZAPs
of Context Zones can be further self-organised to support higher level Context Zones of the
hierarchy. The Context Zone created by the ‘patient state’ role along with other roles, for
example, ‘medical history analysis’ or ‘disease knowledgebase’, may become part of a higher
level Context Zone created by say ‘therapy recommendation’ role. In this case, the “patient
state’ role becomes a provider role, whereas it was a consumer role within its Context Zone.
The emerging hierarchical structure comprises a number of levels, determined by the number
of the Context Zone levels created which we now formally define.

Definition 3. (Context Zone levels)

Self-organisation of object network leads to formation of multiple Context Zones. These
Context Zones can fit in specific levels of the hierarchy, governed by roles’ information
dependencies. We formally define Context Zone levels with the following: for a Context
Zone g at a level x, Z7, the following must hold true:

Zy = (0i{ry), @) < (Vrf, € ©,30, € T @ 0,V Z37").

That is, all the dependencies of the Context Zone (Z7) ZAP, contained in the © set must
be ZAPs of lower level Context Zones Z;,~ ! However, there are two exceptions to this rule:

(i) Level 0 Context Zone that states that each of the dependencies of the Context Zone
ZAP must be roles that have no further dependencies; and

(i) Leader object Context Zone that states that the Context Zone ZAP must not be part
of another Context Zone, that is the ZAP cannot assume a provider role. This
then ensures that the leader object Context Zone sits at the highest level of the
hierarchy.

Thus far, we have formally defined the concepts that enable object network self-
organisation from local object-to-object interactions. The basis for establishment of
dependency relationships lies in matching semantic queries sent by consumer roles with the
information offered by provider roles within the object network. Therefore, a successful
matching of information needs of a consumer role with the roles providing the requested
information can only be achieved if there exists a semantic description of requested and
provided information, which in our case translates to semantic role description.

3.1.2.4. Semantic role description. ~As can be seen from the above description, the basis of
Context Zone formation is the consumer/provider dependency relationship between roles.
However, matching the needs of a consumer role with the information generated by
provider roles requires role semantic description. Role semantic description allows
computation of semantic similarity between the requested information and the provided
information. Much work has been done in area of semantic description of services (for an
overview see Cabral et al., 2004). Therefore, we can use any of the methodologies proposed
in the current literature on semantic service description ranging from service taxonomies to
Ontologies to describe object roles.
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However, rather than opting for a particular semantic role description, we have chosen
to make the process of object network organisation to be independent of any specific
semantic role description. In our solution, inspired from Klein et al. (2003), the self-
organisation process is able to handle any semantic role description, where the only
requirement is that the semantic role description of choice must support a semantic
distance function. The distance function is used to calculate the degree of semantic
similarity between a set of roles. The output of the semantic distance function determines
whether the needs of a consumer role are closely enough matched with a provider role,
effectively determining whether a dependency relationship can be established between a
consumer role and a provider role.

One of the main reasons for taking this approach is that we feel it is highly unlikely that
one semantic description will be agreed upon across diverse domains. Therefore, pre-
selecting a specific semantic role description would severely limit the applicability scope of
object networks. In addition, diverse domains have specific requirements that may render a
particular semantic role description unsuitable for a specific domain.

A generic representation of the distance function is as follows:

disl(oi(rf),oj(r}f)) — 0.

The semantic similarity coefficient ¢ is calculated between an information query from a
consumer role r¢ housed in the object 0, and information from a provider role £ housed in
a different object 0;. There are numerous examples of semantic service descriptions that
meet our criteria in providing the distance function. For instance, in service taxonomies the
distance function can be defined by counting the number of edges traversed when getting
from one service description to another. In case of more complex semantic service
descriptions such as Ontologies utilizing OWL, work already exists to calculate the
distance function (see Shancheng et al., 2006, for an example).

Clearly, the implementation of the distance function is highly dependent on the semantic
role description of choice and also the domain in which an object network has been
deployed. However, in general terms, we envisage that a semantic boundary value p will be
defined to indicate the similarity threshold, such that two roles are semantically similar if
0<f and thus allowing dependency relationship to be established.

3.2. Decision Module

DM is one of the main components of the overall architecture, and is executed by the
leader object with the responsibility of deducing user activities. At the same time, the DM
constantly adapts and refines the AM to the dynamics of the user behaviour. Deduction of
activities is performed on the basis of information pertaining to user actions. This
information is generated from the low-level sensors and processed throughout the object
network hierarchy up to the leader object to be utilised by the DM.

The DM, illustrated in Fig. 3, is an orchestration of two chief components, namely the
AM that serves as a repository of user activities and the Rule Engine that enables
continuous adaptation to user behaviour changes through refinement of the AM.
Watchdog Timer is used to detect sporadic events that may occur due to users shifting
focus.

The AM is a repository that is specific to a user within a domain and stores activities that
a user has performed. The concept of AM is based on the idea that users typically perform
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activities drawn from a finite set in order to achieve a particular goal. An example of part
of an AM is illustrated in Fig. 4. The AM is stored centrally within the user’s working
environment akin to user’s profile (for example, within the hospital server). Upon creation
of an object network surrounding the user, subset of the AM is retrieved that corresponds
to the activities that can be performed within the user’s current domain, for example,
within a specific hospital ward.

The internal structure of an AM corresponds to a directed graph where each arc is
assigned a probability value. This essentially forms a Dynamic Bayesian Network (DBN).
The AM represents the relationships between an activity and a causal. Causals are events
from the object network that are used as evidence in inferring the activity a particular user
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is engaged in. Causal set determines the facts that have to be true for an activity to take
place. Received information from the object network is essentially evidence that is
constantly fed to the DBN to infer a set of likely activities, where we apply the Junction
Tree Algorithm.

The DBN requires constant refinement such that it can adapt to dynamically changing
user behaviour. The refinement process involves updating the Bayesian Network belief
values across nodes. This process is determined on the basis of user behaviour such that the
DBN reflects the changes in this behaviour.

We observe user behaviour through the events from object network in order to obtain
a set of sequences. A sequence represents an ordered set of events ¢ raised as a result
of user actions while performing a specific activity 4. A sequence is denoted with 14 =
{1, ...,0,> and reflects user behaviour’s actions when manipulating objects. For
example, a sequence is created when a nurse manipulates the following objects in order:
Iodine Container, Numbing Agent and Epidural Needle (refer to Fig. 4). We analyse the
set of obtained sequences and select the most likely sequence for an activity. The most
likely sequence is the one that has occurred most frequently during our observations,
denoted with /1,14 which represents the most typical user behaviour. For instance, in the
example presented above, the nurse may handle the three objects in this sequence (Iodine
Container, Numbing Agent and Epidural Needle) 85% of the time when preparing an
epidural procedure. Upon selection of the most likely sequence, we then extract the activity
causals which are used to refine the DBN.

Therefore, considering the most likely sequence with » number of causals we refine the
DBN as follows:

Vo, €l ene(1...#)) = P(4|p,).

For every object network event (causal) ¢ in the most likely sequence, we increase the
DBN conditional probability of the node that corresponds to that causal with respect to
activity A where the P(A|¢,) is refined. The refinement process thus allows DBN to
dynamically adapt to user behaviour changes as we show in Section 5.

However, there are times when a user may start an activity that s/he may not always
complete. In fact some activities may only be started, for example, by manipulating the
initial object, and not completed due to user changing their focus attention (e.g. a sudden
emergency). For instance, in a simple activity ‘making tea’, the user may intend to prepare
a tea by taking the cup out from the cupboard when the door bell rings, thus making tea
activity is not completed or is left hanging. Clearly, the activity recognition system should
not attempt recognising ‘making tea’ activity, but rather temporarily terminate the activity
since it was interrupted.

In order to detect these sporadic events and also increase the activity recognition
accuracy, we have incorporated a minimum duration value for various causals
implemented through the Watchdog Timer component in Fig. 3. The minimum duration
value is particular to a casual and is not a constant. This value will differ for each user,
based on the user’s behaviour. Therefore, when we observe the sequence of user actions, we
also record the amount of time the user spends manipulating a specific object or the time
between object network events, stored in the Timing Info module in Fig. 3. These records
are then used to adjust the minimum duration value for each casual. When an event from
the object network indicates that the user is performing an action, for example
manipulating an object, we do not start the activity inference process until the minimum
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time has elapsed. An exception to this rule occurs when the user generates another object
network event before the minimum time expiration. If the second object network event is a
causal belonging to the same activity as the first causal, then the activity inference process
can proceed, since the change in time indicates a variation in the user behaviour. This
variation is then reflected back into adjustment of the minimum time for the first causal.
Otherwise a sporadic event has occurred and thus the first causal is ignored. The second
causal is now regarded as the start of another activity having the same rules applied
regarding the minimum time. The process is then repeated for each new and subsequent
causal. As such the minimum duration rules in conjunction with the DBN refinement
ensure an accurate and adaptable activity inference process.

4. Collaborative activities

Technology already plays an important role in our everyday lives, while humans
continue to be social creatures that aim to interact in multimodal ways. Human interaction
implies existence of activities that are not performed in isolation; rather they require
cooperation amongst interacting users. These activities play a significant role especially in
working environments, thus researches have investigated various ways in which technology
can be used to support these activities. A dedicated research field called Computer
Supported Collaborative Work (CSCW) has risen as a result.

CSCW has been investigated extensively in the last two decades (Grudin, 1994). The idea
is based on studying the manner in which technology can support users in their work and
has been defined by Peter and Carstensen (1999) as addressing “how collaborative
activities and their coordination can be supported by means of computer systems”. CSCW
emerged as a result of realising the vast potential of technology and its advances in
enabling coherent and effective conduction of work activities. It has been applied to large
number of domains, from teleconferencing (Quemada et al., 1996) up to commercial
aeroplane production lines (Laborie et al., 2005). Our solution for activity recognition can
support CSCW, where a typical interaction of CSCW environments participants is
illustrated in Fig. 5. User interacts with the various technologies which, based on the
mechanism described in the previous section, have the ability to infer user’s activity. This
interaction provides a window to the ‘world’ of other participants enabling exchange of
information pertaining to the collaborative activities.

For instance, CSCW used in aeroplane assembly lines requires a high degree of
coordination such that the final product is assembled with high precision. Therefore,
continuous knowledge of the staff activities provides a solid basis to monitor the assembly
process and schedule various tasks such that the overall process is completed in the
shortest possible time.

While CSCW environments have a wide applicability scope, we focus our paper in the
health-care domain. We aim to show how activity recognition can support health-care
CSCW environments to improve the efficiency of the day-to-day collaboration activities of
doctors and nurses. In the current practice, a nurse or a set of nurses typically follow the
doctor while s/he interacts with the patients and take notes of the doctor’s recommenda-
tions (Sweet and Norman, 1995). Then these recommendations are carried out for each
individual patient based on the urgency. In some practices, the doctor may give his
recommendations solely to the head nurse which then allocates various tasks to other
nurses. In either case the nurses’ time is not efficiently utilised. For example, the idle time
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while the doctor is making diagnosis could be spent on other activities in patient care. Also
in case of multiple doctors the head nurse may be under pressure to note all the
recommendations given, therefore, decreasing response time and increasing the chance of
errors in patient treatment.

Our system, on the other hand, can utilise the activity recognition system to deduce each
individual activity and through collaborative negotiation protocol support remote virtual
collaboration. In this instance, the doctor does not allocate a task to a specific nurse or
request the head nurse to do so; rather the doctor’s request is allocated seamlessly to a
specific nurse that is selected based on the various activities of the various nurses.

The activity of each nurse is provided by our activity recognition system through
inference of medical staff activities. Therefore, a doctor’s requests can be routed to an
appropriate nurse without a need for a mediating person or requiring a nurse to shadow a
doctor during his activities. Based on this transparent concept, when doctor is ready to
make a request for a particular patient (e.g. dress the wound), he simply enters the
appropriate information on his mobile device. This request is then allocated to a nurse.
The decision as to which nurse receives a particular request is agreed after considering a
number of activity metrics.

Clearly, a naive scheme of allocating the doctor’s request would be to simply select a
nurse based on her current activity, for instance the nurse with the lowest activity priority
(activity priority value is assumed to be predetermined). However, such scheme may bias
the workload towards less experienced nurses, since nurses with high experience tend to
carry out high priority activities. Also doctor’s requests may be such that they must be
carried out by an experienced nurse. Therefore, our devised solution takes into account
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three primary factors, namely experience, workload and activity priority. These factors
were chosen primarily because they correspond to the overall work state of a nurse and
also they can be calculated directly from the activity recognition process. The workload
metric can be obtained by measuring the number of activities a particular nurse has carried
out during her shift, while experience is a long-term monitoring of nurse’s activities. The
actual allocation process and the associated sequence diagram will be elaborated on in the
next section.

4.1. Request allocation process

The process of allocating a doctor’s request to a nurse essentially translates to an
optimisation problem. The objective of the optimisation function is to maximise the
efficiency of the medical ward within the resource constraints imposed by the number of
nurses available. We define efficiency as the ratio of the sum of currently attended
activities’ priority values with the total number of activities’ priority values as follows:

S AR
&= R
S AR+ A

where A,If represents an activity that is currently performed by a medical staff, and A;f
represents a suspended activity waiting to be attended to. In order to calculate the
efficiency we have defined a virtual activity queue that holds information about activities
that nurses and doctors are currently performing in addition to activities that have been
suspended or any new activities that are generated due to a doctor’s request. In other
words to ensure the highest efficiency, the allocation process’s objective is to suspend only
the activities with lowest priority values subject to available resources and constraints
associated with these resources, such as nurse workload and experience.

Once the request is entered, the doctor’s mobile device broadcasts a request information
about activities of the nurses in the vicinity. This broadcast message is transmitted to the
leader object of each of the nurses’ object network that is in close vicinity to the doctor.
The leader object of the various nurse’s object networks will respond back to the doctor’s
mobile device of their current activity. Upon receiving this information, the mobile device
uses a linear objective function to select the most appropriate nurse. This selection is based
on three criteria incorporated into the objective function as follows:

v=aE+ (1 — W)+ (1 — P), (2)

where E, W, and A represent nurse experience, workload and current activity priority,
respectively, along with their weight coefficients o, 5, and 6. Combining these values into
the objective function yields an availability value v that measures the degree of readiness of
a nurse to cater for doctor’s request. Clearly, not all activities performed by a nurse can be
interrupted. Activities with high priority, for instance assisting in a surgical theatre, cannot
be interrupted; therefore, we have defined an activity priority threshold. Activities that are
above the threshold cannot be interrupted and the threshold value is represented as
another constraint in the objective function.

Once the nurse’s leader object accepts the request from the doctor’s mobile device, an
alert is sent to the nurse’s mobile device to suspend her current activity and process the new
activity.

(1)
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However, as soon as the nurse’s activity is suspended, the efficiency value ¢ is lowered by
the activity priority value of the suspended activity. Due to this decrease, the allocation
process must ensure that another nurse with a lower activity priority value takes over the
suspended activity. Replacing the suspended activity with another activity of lower priority
has the effect of increasing the efficiency, thus bringing the & ratio closer to the peak
efficiency. However, since the second nurse is assigned to take over a lower priority
suspended activity, the alert sent to the nurse’s device will only require the nurse to
perform the activity once her current activity is completed. This will avoid blindly asking
nurses to change from one activity to another frequently, which incurs a large overhead
primarily in the time spent changing from one activity to another which may also have
unpleasant effects on the nurses caused by the frequent activity changes.

The overall allocation process is illustrated through an example where the sequence
diagram is shown in Fig. 6.

The sequence diagram highlights the tasks that have to be accomplished to respond to
doctor’s request and allocate activities to available nurses. The doctor has just finished
reading the latest medical headlines on his wall screen and is now preparing for his daily
routine of patient assessment of medical conditions. During his rounds he visits each
patient individually and based on the physical examination and patient’s monitoring
history he can recommend various actions to be taken, such as altering the current therapy
or various recovery tasks. The activity recognition system has inferred the doctor’s activity
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of ‘doing rounds’ based on events from his surrounding object network (e.g. handling PDA
and moving through Zones of patient’s bed). He is currently examining a patient that has
been in the hospital for a number of days after being involved in a serious motorbike
accident. The vital signs are stable; however, his leg wound is not healing properly. The
doctor notices areas of necrotic tissue around the wound. He enters in his mobile device the
immediate request to redress the wound after treating it with Dakin’s solution. His request
is of high priority since if left untreated the patient runs the risk of developing sepsis. This
action signals the doctor’s mobile device to send for a nurse that can complete this
emergency request. Clearly, at this point the efficiency has been lowered since there is new
unattended activity added to the queue. Incidentally, doctor’s mobile device has broadcast
the request to all DMs of nurses’ leader object within a particular radius. The DMs of the
nurses within vicinity respond with the current deduced activity from the activity
recognition system. This allows doctor’s mobile device to subscribe to the updates of
current activities of the nurses in vicinity in order to select a nurse to complete his request.
This information shows that Nurse 3’s availability is the highest. She is currently preparing
a patient for an epidural. Since this procedure cannot be interrupted the request is not sent
to Nurse 3, due to the fact that her activity priority falls above the threshold. Nurse 2 is
currently examining the IVs of the patients in the intensive care ward. Her activity has
lower priority than the activity of Nurse 3 and also due to her experience Nurse 2 is chosen
to carry out doctor’s request. She has just finished replacing the catheter from the hand
vein of a patient when she receives the request to attend to doctor’s recommendations. She
clicks the accept prompt on her mobile device. However, doctor’s mobile device has
inferred that Nurse 2 will not complete her activity for all patients in the ward and puts her
activity in a suspended state while attempting to find another nurse that can take over the
remaining patients. At this point the efficiency slightly increases, since the doctor’s request
i1s now removed from the activity queue and Nurse 2’s activity is put on the queue. The
increase in efficiency stems from the fact that Nurse 2’s activity has lower priority value in
comparison with doctor’s request. The newest update of nurses’ activities reveals that
Nurse 1 is just about to finish a routine administrative work of the day. Therefore, the
doctor’s mobile device assigns the suspended activity in the activity queue to Nurse 1 so
that she can attend to as soon as her activity is finished. At this point, Nurse 2 has left to
attend to doctor’s request; while a short time later Nurse 1 begins examining IVs of the
remaining patients.

This scenario has presented how the activity recognition systems can help support
virtual negotiation between different object networks to help determine what each nurse is
currently performing and who to assign the new task to. The system mimics an invisible
shadow that evaluates the users’ activities automatically and performs communication in a
peer—peer fashion in order to maintain the overall efficiency at the highest level possible.

5. Simulation results

We now provide the performance evaluation results of our system. Since the
collaborative activities are supported by the activity recognition system, as detailed in
the previous description, we have divided the results in two logical sections, namely the
performance evaluation of the activity recognition system and also evaluation of the
efficiency of the collaborative environments. We will demonstrate our solution through
three types of simulations, namely (i) activity recognition accuracy with respect to learning,
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(i) management of Context Zones with respect to user’s behaviour, and (iii) remote virtual
collaboration.

5.1. Activity recognition

In order to test the performance of the system, we have analysed activities of the medical
staff and recorded the manner in which these activities were performed. We then fed this
data directly to the Test Agent (TA) object. Initially, the TA loads up a scenario that
specifies its behaviour. The scenario controls what objects typically take part when
performing an activity and their status during that time.

User actions and the resulting behaviour are encoded using a Markov Chain based
model. Markov Chain models have been used to model user behaviour in a number of
research projects (Hlavacs and Kotsis, 1999; Sokolov, 2003) since they allow representa-
tion of the dynamics of user behaviour. In our model, the Markov Chain state space is used
to define the set of objects that are manipulated during the course of performing an
activity. In addition, the transition matrix defines the probability of user manipulating an
object n given that s/he is currently manipulating another object m throughout the state
space. A Markov Chain exists for each simulated activity and each Markov Chain model
represents the behaviour of a single user. It should be noted that Markov Chains are
created based on the observation of the manner in which an activity is conducted including
objects manipulated and their frequency of manipulation.

Each Markov Chain is loaded into the TA which has the responsibility to extract a
sequence from the model. The sequence refers to an ordered set of objects that the user has
manipulated while performing an activity. The probabilistic nature of the model caters for
variation in the user’s behaviour where the sequences obtained may differ reflecting the way
that humans conduct activities—variation is almost always present. A sequence from the TA
is fed to the DM and reflects a particular manner in which the user performs an activity. An
important advantage of this approach is that the simulation process is entirely transparent to
the object network and the leader object, since TA generates events in the same manner as
they would have been generated should a real user perform a particular activity.

We now present the simulation results related to performing a number of medical
activities. Our simulation consists of 20 iterations for each activity, resulting in 20
sequences—equivalent to the user repeating a particular activity. The iteration step is set to
4, which means that for every four sequences obtained, we calculate the most likely
sequence which we use to refine the DBN (refer to Section 3.2). The initial structure of the
DBN contains activity causals for each activity with the probability impact of each causal
P(A|c = T) set to a neutral value of 0.5 (A4 represents an activity and c i1s a causal of that
activity). The DBN refinement is carried out by increasing the probability impact of
particular causals based on the most likely sequence. Based on our chosen parameters,
during the course of 20 iterations, the DBN is refined five times.

We have setup our simulation environment to recognise seven activities. However, we
only show the results pertaining to the scenario, namely recognition and evaluation of
four activities, depicted in Fig. 7. These simulations are carried out with respect to the
DBN in Fig. 4.

Closely examining these refinements it can be seen that ‘Administrative Work™ activity
only achieved inference probability of 0.748, despite the fact that the same simulation
parameters, such as number of iterations and iteration step, were used for each activity.
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Fig. 7. Impact of DBN refinement in activity inference.

We attribute the inference probability problem to the number of causals. This activity is
more general than other activities since larger number of objects is used to define this
activity, as opposed to manipulating intravenous line in ‘Changing IV’ activity for
example. Thus, ‘Administrative Work’ requires larger number of causals (see Fig. 4).
Based on the probability of 0.748 for activity ‘Administrative Work’, the most common
sequence of causals used to refine the DBN was Typing, HandlingCharts, Consultation,
FilingReport, AdministrativeApplication, in this order, which occurred 80% of the time.

In our simulation setup, Administrative Work had five causals compared to three
causals for Changing IV and Preparing Epidural activities or four causals for Doing
Rounds activity, which meant that there was much more room for variation. In fact,
theoretically this variation translates to v = 5! or 120 combinations, whereas much smaller
difference exists between the other activities, only v =4! or v = 3! which is 24 or 6
variations, respectively. Clearly, our Markov Chain model adds predictability that reduces
this variation.

As such, increasing the number of iterations and the number of refinements mitigates
this problem as can be seen from Fig. 8. For the results in Fig. 8, we have increased
the number of iterations from 20 to 32 such that the number of refinements has also
increased from 5 to 8. Changing these parameters, we obtained the inference probability
close to 0.9.



650 V. Osmani et al. | Journal of Network and Computer Applications 31 (2008) 628—655

Administrative Work

—— Initial Inference —8— Refinement 1 Refinement 2
Refinement 3 —%— Refinement4 —e— Refinement 5
—+— Refinement 6 —2— Refinement 7 ——— Refinement 8

bt
™

S
o)

o
N
1

Activity Inference Probability
o
[N

o

o
-
N
w

IN
()]
o

Fired Causals

Fig. 8. Administrative work activity refinement.

DBN Refinement

M Doing Rounds # Changing IV
Preparing Epidural Il Administrative Work

Activity Inference Prob.

13 15 17 19 21 23 25 27 29 31 33
Number of Iterations

Fig. 9. Training effort required for each activity.

Our results show that some activities take longer to train than others, a behaviour that is
primarily determined by the number of activity causals. The overall training effort required
for each activity is shown in Fig. 9.

While the first three activities trained well to achieve satisfactory inference probability
close to 1, the ‘Administrative Work’ activity required further training. Clearly, we could
have decreased the iteration step from 4 to say 2 which would have given us 10 refinements
within 20 iterations. However, the problem with this approach was that the system had to
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infer the most likely sequence from a pool of only 2 sequences which tended to confuse the
refinement process.

5.2. Context Zone formation

Once we have refined the activities and trained the DBN, the system knows the
associated objects of a particular user behaviour. This information is used to efficiently
predict formation of Context Zones. Establishment of Context Zones is a prerequisite
to a successful activity inference process. Context Zone formation is another part of
the simulation process that is concerned with measuring the performance of the
system with regards to the management of objects (e.g. sensors, actuators, PDAs)
interconnected within the environment. We are primarily concerned with the number
of Context Zones created as a response to user activities and we aim to reduce this
number through prediction of the user’s actions and hence Context Zone formation
based on the most likely sequence. There are two benefits associated with this reduction.
Firstly, the Context Zones can be established in advance, thus increasing the
responsiveness of the activity recognition since there is no delay in Context Zone
formation. Secondly, by establishing only the Context Zones that are necessary, we reduce
the number of messages exchanged between sensors thus minimise the sensor energy
expenditure.

Initially, we create all possible Context Zones in the environment, since the system does
not have any knowledge about activities a user may perform. Then as DBN is refined, we
use the knowledge about the most likely sequence to predict user’s activities and establish
specific Context Zones in advance. Context Zone formations are highly localised since they
depend, amongst other parameters, on the physical position of the sensors. For example, a
Context Zone created within the Patient’s Room typically contains objects that are local to
the Patient’s Room domain. However, this does not preclude Context Zones from
interacting with other Context Zones outside a specific domain.

With no knowledge about user behaviour the total number of Context Zones created
amounts to 29 in order to recognise each of the four activities. For our simulation, we use a
three level object network hierarchy, therefore the number of Context Zones is highly
correlated to the number of causals.

However, as we learn user behaviour by analysing the most likely sequences, this
number gets dramatically reduced as our simulation results show.

For example, as soon as the doctor walks in the Patient’s Room (Fig. 10), the number of
Context Zones is reduced from, initially 17, to only 6. This is due to the fact that Doing
Rounds activity, according to the most likely sequence, requires formation of six Context
Zones. Therefore, we create those Zones in advance in order to infer doctor’s activity.
Other Context Zones are created in conjunction with our prediction of medical staff
activities, which is depicted in Fig. 11. The graph shows that number of Zones gets mostly
reduced in the Patients’ Room when a doctor or a nurse enters to carry out an activity. In
contrast in Nurses’ station and Labour Room, the Context Zone prediction has a lower
effect. This is due to the fact that higher number of activities can be carried out in the
Patients’ Room compared with other locations as defined by our simulation setup.
Therefore, the number of Zones created can be reduced to a higher extent in comparison
with other locations. Clearly, the higher the number of activities recognised, the higher the
Sensor energy savings.
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5.3. Collaboration

We have also tested the efficiency of the doctor—nurse collaboration based on the
scenario depicted in Section 4, and also based on the sequence of operations in Fig. 6. The
results are shown in Fig. 12.

At the point when all the four activities are attended to (cooperative event 4), the
efficiency is at the highest value. The doctor’s request for the wound redress causes a new
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activity to be created which is initially unattended (event 5). Therefore, the efficiency
drops, according to Eq. (1) defined in Section 4.1, since there is a new request in the activity
queue. Once the doctor’s request is assigned to Nurse 2 and the nurse responds (event 6),
causes efficiency increased since doctor’s request has been removed from the queue while
activity of Nurse 2 that has lower priority is put into the activity queue. As illustrated
in Fig. 6, as Nurse 1 finishes her current activity and attends to the activity of Nurse 2
(event 7), it causes the efficiency value to increase again following a similar pattern.

6. Conclusion

Increasing costs of health-care provisioning is becoming an ever growing challenge for
health-care institutions. Growing number of elderly population and other factors, such as
reduced funding are contributing to this challenge. However, employing the latest
technological advancements can enable these institutions to become more effective in
patient care provisioning. We have shown how activity recognition process can be applied
in health-care environments. We have also shown our synergetic approach in which an
accurate activity recognition process supports remote working collaborative environments
by routing various request to different users on the basis of their current activity.
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