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ABSTRACT

Integration of multimodal, multi-omics data is critical for advancing precision medicine, yet its application is frequently limited
by incomplete datasets where one or more modalities are missing. To address this challenge, we developed a generative
framework capable of synthesizing any missing modality from an arbitrary subset of available modalities. We introduce
Coherent Denoising, a novel ensemble-based generative diffusion method that aggregates predictions from multiple specialized,
single-condition models and enforces consensus during the sampling process. We compare this approach against a multi-
condition, generative model that uses a flexible masking strategy to handle arbitrary subsets of inputs. The results show that
our architectures successfully generate high-fidelity data that preserve the complex biological signals required for downstream
tasks. We demonstrate that the generated synthetic data can be used to maintain the performance of predictive models on
incomplete patient profiles and can leverage counterfactual analysis to guide the prioritization of diagnostic tests. We validated
the framework’s efficacy on a large-scale multimodal, multi-omics cohort from The Cancer Genome Atlas (TCGA) of over
10,000 samples spanning across 20 tumor types, using data modalities such as copy-number alterations (CNA), transcriptomics
(RNA-Seq), proteomics (RPPA), and histopathology (WSI). This work establishes a robust and flexible generative framework to
address sparsity in multimodal datasets, providing a key step toward improving precision oncology.

Introduction
Biomedical research increasingly relies on the integration of heterogeneous data to characterize complex biological systems.
Traditional approaches often isolated specific modalities, treating them as independent analytical domains [1]. While this
sectoral approach has led to substantial progress in many individual disciplines, it limits the ability to capture cross-scale
dependencies and emergent patterns that arise from the interaction of multiple biological processes.

In recent years, a growing need has emerged to move beyond a fragmented view and adopt a more holistic, multidisciplinary
approach. This involves aggregating, integrating, and analysing diverse biological scales and data modalities that compre-
hensively capture biomedical features across large patient populations [2, 3, 4, 5, 6]. Several studies have shown that this
multimodal method can outperform single-modality approaches in specific tasks [7, 8]. One strategy for this integration is to
operate on a unified embedding level [9]. This paradigm has been advanced by the emergence of large-scale foundation models,
which can be pre-trained on vast datasets to learn powerful, dense representations of complex data [10]. For example, vision
transformers like Titan [11] can distil the rich information from gigapixel whole-slide images into a single feature vector. Once
each data type is converted into this common embedding format, they are typically fused within a shared latent space to enable
downstream prediction [12].

This evolving landscape encouraged the proliferation of initiatives such as the The Cancer Genome Atlas Program (TCGA),
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the National Cancer Database (NCDB), the UK Biobank, which systematically collect and harmonize multi-omics, imaging, and
clinical data across diverse populations to support biomarker discovery, disease modeling, and precision medicine applications
[13, 14]. However, despite the advancements enabled by these large-scale projects, translating integrative models into clinical
settings remains challenging [15]. Many patients datasets are inherently incomplete, often because certain modalities are
prohibitively expensive, technically challenging to acquire routinely [16, 17], or simply unavailable in low-resource settings
and specialized centers with limited access to comprehensive molecular diagnostics or advanced imaging equipment [18, 19].

Generative artificial intelligence (GenAI) is emerging as a powerful tool in this field, offering methods to model the
complex distribution of medical data. Primary applications include data augmentation to expand or balance limited datasets,
the generation of fully synthetic yet biologically plausible data to facilitate research while preserving patient privacy, and the
synthesis of missing modalities to address data sparsity. Early frameworks based on Generative Adversarial Networks (GANs)
[20, 21, 22, 23] and Variational Autoencoders (VAEs) [24] showed success in unimodal synthesis. For example, OmicsGAN
[25] was used to enrich two omics modalities (e.g., mRNA and microRNA) using adversarial learning, integrating prior
knowledge of molecular interaction networks to guide realistic data generation. Similarly, MG-GAN [26] was able to produce
synthetic gene expression data for traing set augmentation in downtream tasks. In a complementary approach, RNA-GAN
[27] demonstrates the potential of cross-modal learning generating synthetic whole-slide images (WSI) tiles, conditioned on
RNA-sequencing profiles. More advanced architectures also incorporate multi-conditioning strategies, such as CLUE [28],
a VAE-based single-cell data reconstruction tool. However, clinical translation of GANs and VAEs has been challenged by
training instability, lower-fidelity outputs, and difficulties in extending them to flexible, conditional multimodal generation
[29, 30, 31]. More recently, Denoising Diffusion Probabilistic Models (DDPMs) have emerged as a new state-of-the-art,
offering stable training and high-quality sample generation [32, 33]. Their effectiveness is well-established for single-modality
tasks [34, 35], particularly imaging [36, 37, 38]. For instance, MCAD [39] applies multi-conditional strategies to PET image
reconstruction, while stDiffusion [40] enables the generation of spatial transcriptomics data. Nevertheless, at the current
state-of-the-art, application of GenAI to the complex, any-to-any conditional synthesis of multimodal healthcare data remains a
critical and underexplored research area [41].

To address these challenges in multimodal learning, we introduce a unified, cross-omics, cross-modal generative AI
framework designed to synthesize missing biomedical data from any combination of available modalities. We demonstrate its
capabilities on a large-scale, multimodal, multi-omics cancer dataset comprising copy-number alterations (CNA), transcrip-
tomics (RNA-seq), proteomics (RPPA) or histopathology embeddings (WSI). Our primary contributions include: (1) ensemble
generation via Coherent Denoising, a novel and highly scalable late-fusion ensemble method that aggregates predictions from
multiple single-condition diffusion models, enforcing consensus during the sampling process; (2) a comparison of this approach
against a state-of-the-art multi-condition diffusion model that seamlessly handles arbitrary subsets of input modalities with a
flexible masking strategy; (3) a comprehensive validation on a pancancer cohort of over 10,000 primary tumors spanning 20
cancer types, with four data modalities, each encoded in a low-dimensional latent space; demonstrating that our methods not
only reconstruct data with high fidelity but also preserve the critical biological signals required for downstream tasks, including
tumor type classification, stage prediction, and survival analysis; highlighting the ensemble’s privacy-preserving advantages; (4)
a showcase of the translational utility of our approach through two key applications: enhancing the performance of multimodal
machine learning models in the face of missing data at inference time, and a novel counterfactual analysis to guide the strategic
prioritization of data acquisition for diagnostics. Together, these results establish cross-modal generation as a robust tool to
work with sparse patient profiles, with promising applications in precision medicine, in silico trials, and resource-constrained
diagnostic workflows.

Results
We utilized a large pan-cancer cohort from TCGA, comprising 10,098 samples with four distinct data modalities: CNA,
RNA-Seq, RPPA, and WSI embeddings. To create a harmonized data representation suitable for multimodal learning, we
first encoded each omics modality into a dense, 32-dimensional latent space using modality-specific autoencoders. We then
developed and benchmarked two diffusion-based generative frameworks - a multi-condition model and our novel ensemble
generation via Coherent Denoising - to synthesize any missing modality by conditioning on any combination of available ones.
The full methodological process is described in the Methods section.

The efficacy of our generative framework was evaluated through a series of experiments on a held-out test set of 1,350
pan-cancer samples. The evaluation first assesses the fidelity of reconstruction, beginning with a qualitative analysis of the
global data manifold using Uniform Manifold Approximation and Projection (UMAP), followed by a quantitative measurement
of the performance for each modality using the coefficient of determination. Subsequently, we use a downstream classification
task as a functional test of generation quality, evaluating if the synthetic data preserves the predictive signals required by
single-modality classifiers. Finally, we demonstrate two practical applications: the use of generative data completion to enable
high performance of a multimodal predictive model faced with incomplete test data and a counterfactual inference approach to
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guide the prioritization of data acquisition. We also note an inherent privacy-preserving advantage of the ensemble approach,
which unlike a monolithic multi-condition model proves robust against unconditional generation aimed at reconstructing the
training data manifold.

Multimodal Distribution Fidelity
As a first step, we investigated whether our generative frameworks could preserve the global structure of the multimodal data
manifold. This analysis qualitatively evaluates the preservation of large-scale biological patterns, namely the distinct clustering
between cancer types, evident in the original data. To this end, we performed a qualitative analysis using the UMAP [42].
While we acknowledge that UMAP may not always preserve global structure accurately [43], we use to assess the visual
correspondence between the real and generated data manifolds, rather than as a definitive clustering tool.

We compared the UMAP embedding of the ground-truth test set against embeddings from two fully reconstructed test sets.
These were generated by our primary methods: the multi-condition model and the Coherent Denoising ensemble model. For
this analysis, a complete, synthetic profile for each test sample was assembled by iteratively reconstructing each of the four
omics and modalities (CNA, RNA-Seq, RPPA, WSI) while conditioning on the real, ground-truth versions of the other three.
The four resulting synthetic modalities for each patient were then concatenated to form a final reconstructed embedding vector.

Figure 1. Qualitative comparison of real and generated data manifolds. UMAP projections of multimodal embeddings from
the test set. The distribution of ground-truth data (Left) is compared with data reconstructed by the multi-condition model
(Middle) and the Coherent Denoising ensemble (Right). Each point is a patient sample, colored by cancer type. Both generative
approaches successfully capture the global topology and distinct cancer-type clustering of the original data.

Figure 1 presents the side-by-side comparison of these UMAP projections. The ground-truth data (Figure 1, Left) reveals
a well-defined structure where samples form distinct clusters that correspond closely to their cancer type of origin. This
underlying organization confirms that the concatenated multimodal embeddings effectively capture strong, tissue-specific
biological signatures. The reconstructed data from both the multi-condition model (Figure 1, Middle) and the Coherent
Denoising method (Figure 1, Right) demonstrate a high degree of qualitative similarity to the ground-truth manifold. Both
generative approaches successfully reproduce the primary clusters with respect to their relative positions, shapes, and degree of
separation. The UMAP visualizations of each individual modality, presenting patterns similar to those in Figure 1, are shown in
the Supplementary Information (Figure S1).

Visual inspection indicates that the overall topology of the data space is well-preserved by both methods. Crucially, our
framework achieves this by generating each target modality conditioned on all the other available modalities, rather than
performing a single, joint multimodal generation. The generated samples are not randomly distributed but are consistent with
the complex biological structure of the original data, successfully synthesizing the multimodal signatures that differentiate
major cancer types. This qualitative validation provides good initial evidence that our framework can generate multimodal
patient profiles that are both diverse and biologically plausible, a critical prerequisite for their use in downstream applications.

Reconstruction Fidelity
Following the qualitative validation, we performed a quantitative analysis to assess the fidelity of our generative frameworks’
reconstructions. We evaluated the performance of both the multi-condition model and the ensemble generation via Coherent
Denoising across all possible combinations of conditioning modalities. The coefficient of determination (R2) was used as the
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primary metric, where a value of 1.0 indicates perfect reconstruction and a negative value indicates poorer performance than
a baseline model simply predicting the mean. For each combination of model and conditioning input, the entire test set was
reconstructed 10 independent times. We then calculated R2 for each of the 10 runs. To assess model consistency, we also
measured the output variance by calculating the variance across the 10 generated versions for each individual test sample,
averaging this per-sample variance across the entire test set, and expressing it as a percentage of the real data variance. The full
results for both metrics are reported in Table 1.

Single-condition Multi-condition Coherent DenoisingTarget modality cna rnaseq rppa wsi
cna — -0.094 ± 0.011 (16.0%) -0.160 ± 0.012 (12.3%) -0.172 ± 0.011 (12.8%) -0.064 ± 0.011 (10.4%) 0.063 ± 0.016 (13.1%)
rnaseq 0.318 ± 0.012 (12.6%) — 0.770 ± 0.001 (0.8%) 0.702 ± 0.001 (1.0%) 0.787 ± 0.001 (0.4%) 0.746 ± 0.001 (0.8%)
rppa 0.169 ± 0.016 (12.1%) 0.605 ± 0.001 (1.1%) — 0.523 ± 0.002 (1.4%) 0.620 ± 0.001 (0.8%) 0.558 ± 0.001 (1.1%)
wsi -0.051 ± 0.006 (10.6%) 0.361 ± 0.003 (3.0%) 0.358 ± 0.001 (2.1%) — 0.392 ± 0.002 (1.2%) 0.439 ± 0.002 (2.1%)

Table 1. Reconstruction accuracy (R2) and output variance by target modality and generative method. Each row shows
the mean R2 ± standard deviation from 10 independent generation runs. Columns indicate the generative method used:
single-condition models, multi-condition models, and Coherent Denoising. The best R2 for each target modality is highlighted
in bold. Values in parentheses show the average variance of the generated samples as a percentage of the total variance from the
real data; lower percentages indicate less output variability, indicating confidence of the model in the sample generation.

The results are summarized in Table 1, with detailed metrics provided in Supplementary Information (Table S1) and
complete conditional combinations (Figure S2). The analysis revealed several key findings.

First, the reconstructibility of the four data types varied significantly. RNA-Seq was the most successfully reconstructed
modality, achieving a mean R2 of 0.79 with the multi-condition model. This high fidelity was accompanied by extremely low
output variance (just 0.4% of the real data’s variance), indicating low model’s uncertainty. RPPA and WSI embeddings were
also reconstructed effectively, reaching maximum mean R2 scores of 0.62 and 0.44, respectively, with similarly low output
variance (0.8% and 2.1%). In contrast, CNA data proved exceptionally challenging to generate from other data types. The
best-performing model for CNA reconstruction achieved a mean R2 of only 0.06, with most model combinations yielding
negative scores. This suggests that the information preserved within the highly compressed CNA embedding is largely
uncorrelated with the latent representations of the other modalities. The poor reconstruction of the challenging CNA modality
was marked by substantially higher output variance (up to 16.0%). This shows that the generative process is able to explicitly
model its high uncertainty in light of insufficient information.

Second, reconstruction performance generally improved when more conditioning modalities were provided. For instance,
generating WSI data from RNA-Seq alone yielded a mean R2 of 0.36, which increased to 0.43 when both RNA-Seq and RPPA
data were used as inputs for the Coherent Denoising model.

Finally, there is performance trade-off between Coherent Denoising ensemble and multi-condition model contingent on the
target omic or modality. The multi-condition model achieved the highest fidelity for the most predictable targets, RNA-Seq
(R2=0.79) and RPPA (R2=0.62). Conversely, the Coherent Denoising ensemble demonstrated superior performance for the
more challenging targets, outperforming the multi-condition model for WSI (R2=0.44 vs. 0.39) and proving more effective in
modeling high-uncertainty (CNA data R2=0.06 vs. -0.06).

Preservation of Predictive Signals in Generated Data
To evaluate generation quality beyond reconstruction metrics, we designed an experiment to measure whether synthetic data
retain the complex biological signals necessary for downstream predictive tasks. We trained Random Forest classifiers [44]
with 500 estimators (trees) on the real training set to perform two distinct tasks: 20-class tumor type prediction and 4-class
cancer stage prediction. Separate classifiers were trained for each of the four data modalities. Random Forests were chosen
for their robustness to high-dimensional data, ability to capture non-linear relationships, and consistently strong performance
across diverse biological datasets [45, 46, 47]. To ensure stable results and robust evaluation, for each generative method and
target modality, a synthetic test set was generated 10 times, each using a different random seed for the generative process. The
performance of the already trained classifier was then evaluated on each of these 10 generated test sets.

The quality of the generated data was then assessed by comparing the classifier’s performance on the real test data with its
performance on synthetic data. This synthetic data was generated by our multi-condition and Coherent Denoising models, both
conditioned on the remaining three real modalities. To account for class imbalance, Figure 2 shows the mean macro F1-score
and standard deviation across the 10 experimental replicates. Full detailed metrics, including balanced accuracy, are available
in Supplementary Table S2. For reference, a baseline performance of a random classifier would be expected to achieve a macro
F1-score of 0.05 for tumor type prediction and 0.25 for stage prediction.

For modalities already rich in predictive information, such as RNA-Seq, RPPA, and WSI, the classifiers’ performance on
synthetically generated data was nearly identical to their performance on real data. In the tumor type prediction task (Figure
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Figure 2. Classification performance on real versus synthetic data. Macro F1 scores for Random Forest classifiers trained
on single real modalities and tested on either real data (orange), data from the multi-condition model (dark blue), or data from
the Coherent Denoising model (light blue). The left panel shows results for the 20-class tumor type prediction task, and the
right panel shows results for the 4-class stage prediction task. Error bars represent the standard deviation across 10 independent
experimental runs.

2, Left), a classifier using real RNA-Seq data achieved a F1-score of 0.94. The same classifier, when tested on RNA-Seq
data generated by our Coherent Denoising model, achieved a F1-score of 0.95. The only instance of a minor, but statistically
significant performance decrease was observed for WSI data generated by the Coherent Denoising model for the stage prediction
task: from F1-score of 0.50 to 0.48 (see Supplementary Information S5.1 for all statistical tests). This parity in performance
indicates that the generative process successfully captures and reconstructs the features within these modalities that are most
relevant for prediction.

A notable divergence in performance was observed with CNA data, a modality with weaker intrinsic predictive power
compared to RNA-Seq, RPPA, or WSI. As depicted in Figure 2 (Left), classifiers tested on synthetic CNA data yielded
significantly higher prediction scores than when evaluated on real CNA data. For instance, in the tumor type prediction task, the
mean balanced accuracy for CNA data increased from 0.565 on real data to 0.717 on data generated by the Coherent Denoising
model (Supplementary Table S2). This improvement suggests that the generative process effectively transfers predictive signals
from the richer conditioning modalities (RNA-Seq, WSI, RPPA) into the feature profile of the synthetic CNA data by reducing
noisy components. This effectively "biases" the predictive utility of the generated CNA, making it more informative for this
particular downstream task than its real counterpart, but this task-specific advantage might not hold in other applications. The
stage prediction task (Figure 2, Right) proved more challenging for all modalities, with smaller overall performance differences
observed between the real and synthetic datasets.

This evaluation serves as a functional measure of generation quality. The outcomes confirm that our framework preserves
existing predictive signals and that the generated data is not a superficial imitation but a meaningful synthesis of the original
multimodal data.

Data Generation to Mitigate Predictive Degradation in Multimodal Downstream Tasks
To demonstrate the downstream utility of our generative frameworks, we simulated a practical clinical challenge: applying
a trained multimodal predictive model to new patients for whom some data modalities are unavailable. We first trained two
separate models on the complete multimodal training set: a Random Forest classifier for tumor stage prediction and a Random
Survival Forest [48] for survival analysis.

We then evaluated these trained models on the test set under numerous missing data conditions, where one or more
modalities were removed. To isolate the predictive power beyond the primary cancer type signature, that previous results
established as a dominant biological signal that is well-preserved in the generated data, we also included a baseline model
trained only on the cancer type labels. This baseline demonstrates the performance attributable solely to knowing the average
stage or survival outcome for a given cancer type. We compared three outcomes for each condition: Ablation, representing
the performance on the dataset with the modality (or modalities) missing; Synthetic from Multi-condition and Synthetic from
Coherent Denoising, for our two reconstruction methods to generate missing data.

The results for the tumor stage classification (F1 Score) and survival analysis (C-index) tasks are presented in Figure 3a
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and Figure 3b, respectively, while Table 2 provides a detailed quantitative breakdown of the performance changes. Detailed
performance metrics, including balanced accuracy, are available in Supplementary Information (Tables S3 and S4).

(a) Stage Classification Performance (F1 Score)

(b) Survival Analysis Performance (Concordance Index)

Figure 3. Performance comparison for multimodal downstream tasks on sparse versus synthetically generated data. The plots
show results for (a) a tumor stage classifier and (b) a survival model. We compare the performance on the complete test set
(Baseline, dark red) against scenarios where modalities are removed (Ablation, orange) and where missing data is imputed by
either the Synthetic Multi (dark blue) or Synthetic Coherent (light blue) models. As a secondary baseline, performances of the
predictive model when only the cancer label is given as input are shown. Error bars represent the standard deviation across 10
experimental runs.

Across both tasks, the removal of modalities often leads to a significant degradation in predictive performance. As shown
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Test Condition Stage Classification (F1 Score) Survival Analysis (C-Index)
Ablation Gain from generated data Ablation Gain from generated data

Drop Multi-condition Coherent Denoising Drop Multi-condition Coherent Denoising
No Cna -0.010 ± 0.012 +0.008 ± 0.013 +0.011 ± 0.009 -0.025 ± 0.007 +0.026 ± 0.007 +0.028 ± 0.006
No Rnaseq -0.045 ± 0.012 +0.044 ± 0.008 +0.037 ± 0.012 -0.163 ± 0.016 +0.162 ± 0.016 +0.160 ± 0.016
No Rppa -0.037 ± 0.007 +0.036 ± 0.012 +0.033 ± 0.012 -0.021 ± 0.004 +0.020 ± 0.005 +0.022 ± 0.005
No Wsi -0.027 ± 0.008 +0.021 ± 0.012 +0.020 ± 0.009 -0.047 ± 0.003 +0.034 ± 0.003 +0.037 ± 0.003
No Cna, Rnaseq -0.065 ± 0.020 +0.058 ± 0.016 +0.059 ± 0.022 -0.187 ± 0.016 +0.184 ± 0.018 +0.186 ± 0.018
No Cna, Rppa -0.066 ± 0.014 +0.058 ± 0.014 +0.066 ± 0.015 -0.035 ± 0.005 +0.037 ± 0.007 +0.040 ± 0.006
No Cna, Wsi -0.034 ± 0.009 +0.031 ± 0.011 +0.026 ± 0.011 -0.082 ± 0.010 +0.074 ± 0.009 +0.075 ± 0.009
No Rnaseq, Rppa -0.098 ± 0.022 +0.084 ± 0.021 +0.083 ± 0.019 -0.114 ± 0.011 +0.107 ± 0.012 +0.109 ± 0.011
No Rnaseq, Wsi -0.206 ± 0.025 +0.187 ± 0.026 +0.193 ± 0.027 -0.197 ± 0.015 +0.179 ± 0.015 +0.185 ± 0.017
No Rppa, Wsi -0.066 ± 0.010 +0.057 ± 0.013 +0.055 ± 0.011 -0.084 ± 0.005 +0.072 ± 0.006 +0.076 ± 0.007
No Cna, Rnaseq, Rppa -0.202 ± 0.024 +0.176 ± 0.017 +0.188 ± 0.021 -0.117 ± 0.020 +0.095 ± 0.021 +0.107 ± 0.021
No Cna, Rnaseq, Wsi -0.149 ± 0.035 +0.117 ± 0.036 +0.136 ± 0.036 -0.219 ± 0.016 +0.190 ± 0.015 +0.207 ± 0.017
No Cna, Rppa, Wsi -0.079 ± 0.020 +0.069 ± 0.021 +0.067 ± 0.019 -0.100 ± 0.020 +0.094 ± 0.018 +0.097 ± 0.017
No Rnaseq, Rppa, Wsi -0.224 ± 0.013 +0.114 ± 0.018 +0.123 ± 0.021 -0.173 ± 0.020 +0.089 ± 0.019 +0.101 ± 0.022

Table 2. Quantitative Impact of Generative Completion on Downstream Task Performance. The table quantifies the
change in performance for tumor stage classification (F1 Score) and survival analysis (C-Index) under various data sparsity
scenarios. All values are reported as mean (± standard deviation) across 10 experimental runs. "Drop from Ablation" indicates
the performance decrease when modalities are removed, relative to the baseline model that uses the complete dataset. "Gain"
indicates the subsequent performance increase after synthetically generating the missing data, relative to the performance on
the ablated (incomplete) data.

in Figures 3a and 3b, the performance under these Ablation conditions can become substantially lower than the Full Data
baseline. As quantified in Table 2, this drop is particularly severe when the most informative modalities are missing. For
instance, removing both RNA-Seq and WSI data resulted in an F1-score decrease of 0.206 (± 0.025) for stage classification.
For survival analysis, the C-Index dropped by as much as 0.219 (± 0.016) when CNA, RNA-Seq, and WSI data were all absent.

Crucially, in every tested sparse data scenario, generating the missing data using either the multi-condition or ensemble
generation via Coherent Denoising models resulted in a marked recovery of performance. Post-hoc analysis confirmed that this
performance improvement over the ablated baseline was statistically significant in all conditions for both stage classification
and survival analysis (see full details in the Supplementary Information S5.2). The only exception is the scenario where only
CNA data was missing for stage classification, where the ablated data already performs at the same level of the full dataset.

This performance rescue was particularly pronounced in cases of extreme data sparsity. For instance, in the survival
analysis task (3b), removing RNA-Seq, RPPA, and WSI data caused the C-index to collapse from a baseline of 0.736 to
0.563. Generating this missing data restored the C-index to approximately 0.66, recovering a substantial portion of the lost
performance. Similarly, for stage classification (3a), generating missing data consistently brought the F1 score much closer to
the full data baseline than the ablated version. Notably, even when more than a single modality was missing, the performance
with synthetically completed data was often statistically indistinguishable from that of the Full Data baseline (full details in
Supplementary Information S5.2), indicating a near-complete performance recovery.

A comparison between the Coherent Denoising and multi-condition models shows broadly comparable performance, with
performance differences that were generally not statistically significant, suggesting neither framework was universally superior
across all conditions. Both proved to be effective at generating high-utility data. In summary, these experiments demonstrate a
key application of our generative framework: as an inference-time tool to complete sparse patient profiles, thereby mitigating
the performance loss of downstream predictive models and enabling more robust analyses in the face of incomplete data.

Counterfactual Analysis for Diagnostic Prioritization
As a final demonstration of utility, we designed an experiment to test whether our generative models could guide the efficient
prioritization of diagnostic resources. We simulated a clinical scenario where a costly but informative modality (e.g., RNA-Seq
or WSI) is not readily available and would need to be acquired. The objective is to determine if our models can help prioritizing
patients that would benefit most from observing that additional modality in order to maximize the performance of a downstream
predictive task, such as tumor stage classification.

To investigate this, we first trained a multimodal Random Forest classifier for tumor stage prediction. We then defined a
counterfactual variance score for each patient in the test set. This score quantifies how much the classifier’s prediction changes
when the missing real data for that modality is substituted with multiple different versions synthesized by our generative models
(conditioned on the patient’s other available modalities). A low variance score indicates that the generated data consistently
leads to the same prediction, suggesting the modality information for that patient is largely reconstructible from their other
original data. A high score suggests the real data contains unique, non-redundant information that the model cannot infer.

We then compared two strategies for progressively acquiring the RNA-Seq or WSI modality for the test set, as shown in
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Figure 4: Random Prioritization, a baseline strategy where the data is observed for a randomly selected subset of patients; and
Informed Prioritization, a strategy guided by our counterfactual variance score, where RNA-Seq and WSI data is preferentially
observed for the patients with the highest variance scores first.

Figure 4. Evaluating Counterfactual Inference for Prioritizing RNA-Seq (Left) and WSI (Right) Data Acquisition. The plot
shows the F1-score of a multimodal stage prediction classifier as the ratio of patients with an observed modality (RNA-Seq or
WSI data) is varied. The Random Prioritization strategy (red) removes that modality data from patients at random. The
Informed Prioritization strategies (blue) use a counterfactual variance score to preferentially acquire that modality data for the
most informative patients first. Error bands show the standard deviation across 10 experimental repetitions. Note that the two
plots are on separate y-axis scales, because of the intrinsic difference in performance that a classifier has with and without that
modality.

The results demonstrate the clear benefit of the counterfactual-guided approach. The Random Prioritization strategy (Figure
4, red line) serves as a baseline, showing a near-linear increase in classifier performance (F1-score) as the proportion of samples
with the observed modality increases from 0% to 100%. In contrast, the Informed Prioritization strategy (blue lines) yields a
much more rapid performance gain, reaching a near-optimal F1-score even when the modality is acquired for only a fraction of
the cohort. For instance, when observing RNA-Seq data (left panel), the informed strategy achieves near-peak performance
with only 40% of samples observed—a level of performance that the random strategy only reaches after observing more than
90% of the cohort. The overall superiority of both informed prioritization strategies compared to the random baseline was
statistically significant (see full details in the Supplementary Information S5.3). This demonstrates that the counterfactual
variance score effectively identifies the small subset of patients for whom the target modality is most critical, allowing for a
highly efficient data acquisition strategy.

This experiment serves as a proof-of-concept for a powerful application of cross-modal generative models. By identifying
patients for whom a given modality is most impactful, these models can provide a quantitative framework to navigate the
complex landscape of modern diagnostics. In a clinical reality where hundreds of available tests can lead to patient wait times
of weeks or months [49], such a framework allows for the strategic prioritization of the most critical assays. This, in turn,
maximizes the utility of finite resources, shortens the path to a definitive diagnosis, and ensures that clinical decisions are made
in a more timely and informed manner.

Privacy Preservation Properties in Unconditional Generation
A critical consideration for generative models trained on sensitive patient data is the potential for training data reconstruction.
To assess this risk, we evaluated the behavior of our two frameworks under an unconditional generation setting, where no
conditioning modalities were provided as input at inference time. This experiment tests whether the models have memorized
the training distribution to a degree that would allow the recreation of patient-like profiles without specific input, posing a
privacy concern.
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The results are visualized through UMAP and PCA projections in Figure 5 and quantified in Table 3 through F1-score
[50] - for coverage - and Energy Distance (ED) [51]. They reveal a significant difference between the two approaches. The
multi-condition model, which is trained using a masking strategy that includes empty conditioning sets, learns to reconstruct
a substantial portion of the training data manifold even without explicit inputs (Figure 5, left panels). This is confirmed
quantitatively by its low Energy Distance of 1.01 and a non-null F1 score of 0.14, indicating it has learned a strong internal
representation of the overall data distribution.

Figure 5. Privacy Preservation in Unconditional Generation. Qualitative comparison of the training set manifold with data
generated unconditionally by the multi-condition (left panels) and Coherent Denoising (right panels) models. PCA (top) and
UMAP (bottom) projections show the ability of the multi-condition model (that is trained also on masked data) to learn and
reconstruct a good part of the data distribution even without any specific conditioning at inference time. On the other hand our
Coherent Denoising approach is only able to produce unrealistic samples around the mean of the distribution. This is a highly
desirable property in contexts where privacy preservation of the training set is crucial.

In contrast, the Coherent Denoising ensemble is inherently robust against such reconstruction. Since it is composed of
models trained only on single-condition pairs, it cannot generate realistic data without conditioning if this approach has not
been explicitly enabled during training. In the unconditional setting, the ensemble produces unrealistic samples tightly clustered
around the distribution’s mean, failing to replicate the specific, separable clusters of the training data (Figure 5, right panels).
This is evidenced by a high Energy Distance of 2.11 and an F1 score of zero, showing its output is structurally dissimilar to the
training data and fails to recapitulate the training set manifold.
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This outcome demonstrates a key privacy-preserving advantage of the Coherent Denoising framework. Its capability to
explicitly enforce conditioning for meaningful generation enables additional safety layers and inherently mitigates the risk of
inadvertently exposing sensitive training data, making it a more secure choice for applications in clinical settings where data
privacy is crucial.

Model F1 Score Energy Distance
Multi-condition 0.1423 ± 0.0117 1.0076 ± 0.0083
Coherent Denoising 0.0000 ± 0.0000 2.1056 ± 0.0062

Table 3. Quantitative Assessment of Unconditional Generation and Privacy. Comparison of the two models on their
ability to reconstruct the training data manifold without conditioning. We report the F1 Score (higher indicates better manifold
reconstruction, worse for privacy) and the Energy Distance (lower is more similar, worse for privacy) between the generated
and real distributions. Values are mean ± std over 10 runs.

Discussion
The integration of multimodal data is a central goal across biomedicine, as models that fuse multiple data types consistently
outperform single-modality approaches for understanding complex biological systems [7, 8]. A common and effective
strategy for this integration, adopted in this work, involves encoding heterogeneous data into a unified, low-dimensional
embedding space. This approach has been significantly advanced by foundation models capable of learning powerful data
representations [9, 10, 12]. However, the clinical translation of such integrative models is limited by the practical challenge of
data sparsity. Patient datasets are frequently incomplete due to the cost, availability, and logistical complexity of data acquisition
[15, 16, 17, 18, 19]. While generative AI, particularly state-of-the-art Diffusion Models, has shown success in single-modality
and narrowly-defined conditional synthesis tasks [36, 39, 40], current approaches remain too confined to address the challenge
of general, any-to-any multimodal data generation for biomedical research.

In this study, we developed a generative AI framework to address data sparsity in biomedical datasets. A key feature of our
approach is its comprehensive multimodal capability: it is designed not to generate a single target but to synthesize any of four
major data types - CNA, RNA-Seq, RPPA, and WSI embeddings. To achieve this flexibility, we implemented and benchmarked
two distinct diffusion-based strategies. The first, a multi-condition model, represents a monolithic approach where a single,
large network learns to condition on an arbitrary set of inputs via a masking mechanism. As an advantageous alternative,
we introduce ensemble generation via Coherent Denoising, a novel method that offers significant benefits in modularity and
scalability. This technique operates as a flexible ensemble of simpler, independently trained, single-condition models. The
modular design is inherently more scalable. For example, incorporating a new data modality, only requires training new
pairwise models without altering the existing validated components of the framework. The effectiveness of both architectures
was demonstrated on a large-scale, aggregated dataset of over 10,000 multimodal samples from the TCGA program across 20
different cancer types.

We performed a multi-step validation of generation quality. This included qualitative confirmation of data manifold
preservation via UMAP, quantitative measurement of reconstruction fidelity, and functional tests of predictive signal preservation
in single-modality classifiers. Our key findings highlight the downstream utility of the synthetic data produced by our framework.
We’ve shown that this data can be leveraged during inference to reconstruct sparse patient profiles, thereby enhancing the
performance of multimodal models for critical cancer research applications, specifically tumor staging and survival analysis.

Across all tested sparse data conditions, our generative completion yielded a significant performance improvement over
using the incomplete data alone, often achieving results with no significant difference to that of the model using the complete,
original dataset. This capability relies on the preservation of key biological signals that extend beyond the dominant tumor-type
signature, as our full data models consistently outperformed baselines that used only cancer type information. Furthermore,
we established a novel application of these models in counterfactual inference, providing a quantitative method to guide the
prioritization of diagnostic data acquisition by identifying patients for whom a specific modality would be most informative.

Beyond the specific application in this study in a controlled multi-omic, multimodal setting, the ensemble generation via
Coherent Denoising framework is intended to integrate insights from a much broader, heterogeneous ecosystem of models.
This offers a practical solution to the significant challenge of creating a single, all-encompassing model to handle every type of
patient data, from genomics and imaging to phenotype and exposome.

The Coherent Denoising framework is designed to combine information from many different and specialized models, not
just the specific data used in this study. This approach is particularly well-suited for healthcare, where the diversity of data
modalities favors a collection of domain-specific models over a single, all-encompassing one. Our framework provides a
principled method for these specialized expert models to contribute to a unified generative task by forming a consensus. This
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makes it a prime candidate for synthesizing a truly holistic patient view by leveraging a ’community of experts’ rather than
attempting to build one all-knowing model. The modular design also confers significant privacy advantages, as the ensemble is
inherently robust against unintentional data reconstruction, a critical feature for models handling sensitive clinical information.

This work points toward a long-term vision for data-driven approaches in both biomedical research and clinical practice.
The ability to conditionally generate high-fidelity data provides a conceptual step towards future in silico experimentation,
where the entire patient’s manifold could be represented by sampling multiple multimodal profiles for the purpose of testing
novel biomarkers or simulating patient states under hypothetical perturbations. In the clinical setting, our counterfactual
inference analysis showcases a preliminary application of personalized medicine through adaptive diagnostic workflows, where
clinical testing strategies can be tailored to an individual patient to maximize information gain.

The models were trained and validated exclusively on data from the TCGA project; external validation on independent
clinical cohorts will be critical to ensure generalizability. We demonstrated the potential of our framework on four selected
modalities, but this could be expanded to additional data types, such as DNA methylation or metabolomics, which were not
available or too limited in the considered dataset. Lastly, the downstream utility assessment could also be expanded to other
tasks such as treatment response.

Methods

Data and Code Availability
The TCGA data used in this work was downloaded from the GDC Data Portal [52] and the UCSC Xena Hub [53]. The code
used to perform the data preprocessing, train the generative models, and reproduce the results in this paper is available on
GitHub at: https://github.com/r-marchesi/coherent-genAI. The main pipeline of our methodological framework is presented in
Figure 6.

Data Collection and Preprocessing
Tumor multi-omic data were retrieved from The Cancer Genome Atlas (TCGA) via the UCSC Xena platform, comprising
a total of 10,098 primary tumor samples across 20 distinct cancer types. Details about dataset composition are presented in
Table 4.

Cancer Type Total Samples CNA RNA Prot WSI Complete Incomplete
BRCA 1224 1057 (86.4%) 1214 (99.2%) 919 (75.1%) 1054 (86.1%) 812 (66.3%) 412 (33.7%)
KIRC 610 521 (85.4%) 606 (99.3%) 477 (78.2%) 513 (84.1%) 442 (72.5%) 168 (27.5%)
UCEC 584 537 (92.0%) 581 (99.5%) 440 (75.3%) 504 (86.3%) 393 (67.3%) 191 (32.7%)
LUAD 581 507 (87.3%) 577 (99.3%) 365 (62.8%) 468 (80.6%) 310 (53.4%) 271 (46.6%)
HNSC 574 517 (90.1%) 566 (98.6%) 354 (61.7%) 450 (78.4%) 315 (54.9%) 259 (45.1%)
LUSC 555 497 (89.5%) 551 (99.3%) 328 (59.1%) 477 (85.9%) 301 (54.2%) 254 (45.8%)
PRAD 551 474 (86.0%) 550 (99.8%) 352 (63.9%) 349 (63.3%) 231 (41.9%) 320 (58.1%)
OV 530 494 (93.2%) 380 (71.7%) 385 (72.6%) 101 (19.1%) 50 (9.4%) 480 (90.6%)
LGG 530 520 (98.1%) 530 (100.0%) 435 (82.1%) 493 (93.0%) 400 (75.5%) 130 (24.5%)
GBM 523 498 (95.2%) 154 (29.4%) 218 (41.7%) 338 (64.6%) 42 (8.0%) 481 (92.0%)
COAD 503 447 (88.9%) 501 (99.6%) 363 (72.2%) 432 (85.9%) 331 (65.8%) 172 (34.2%)
STAD 478 429 (89.7%) 448 (93.7%) 357 (74.7%) 347 (72.6%) 255 (53.3%) 223 (46.7%)
SKCM 475 463 (97.5%) 473 (99.6%) 352 (74.1%) 211 (44.4%) 159 (33.5%) 316 (66.5%)
THCA 460 0 (0.0%) 458 (99.6%) 304 (66.1%) 407 (88.5%) 0 (0.0%) 460 (100.0%)
BLCA 432 403 (93.3%) 425 (98.4%) 343 (79.4%) 299 (69.2%) 244 (56.5%) 188 (43.5%)
LIHC 429 365 (85.1%) 423 (98.6%) 184 (42.9%) 339 (79.0%) 157 (36.6%) 272 (63.4%)
KIRP 324 284 (87.7%) 323 (99.7%) 216 (66.7%) 262 (80.9%) 190 (58.6%) 134 (41.4%)
CESC 312 296 (94.9%) 309 (99.0%) 172 (55.1%) 196 (62.8%) 121 (38.8%) 191 (61.2%)
SARC 267 247 (92.5%) 264 (98.9%) 226 (84.6%) 224 (83.9%) 181 (67.8%) 86 (32.2%)
TGCT 156 155 (99.4%) 156 (100.0%) 122 (78.2%) 154 (98.7%) 120 (76.9%) 36 (23.1%)
TOTAL 10098 8711 (86.3%) 9489 (94.0%) 6912 (68.4%) 7618 (75.4%) 5054 (50.0%) 5044 (50.0%)

Table 4. Data Summary. Each row corresponds to a cancer type included in the study. The table reports the total number of
tumor samples, and for each modality (CNA, RNA-seq, Proteomics, WSI), the number and percentage of samples available.
“Complete” indicates samples with all four modalities available; “Incomplete” includes all samples with one or more missing
modalities.

The study integrated five data modalities. Clinical/diagnostic information was used exclusively for downstream validation.
Gene expression data were obtained from RNA sequencing (RNA-seq). Proteomic data were derived from Reverse Phase
Protein Array (RPPA) assays. Copy number alterations (CNA) were provided at the gene level. Histological features were
extracted from whole-slide histopathology images (WSI) using Titan [11], a pre-trained vision foundation model that generates
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Figure 6. Overview of the Methodological Pipeline. (Top Panel: Preprocessing) Data from the TCGA cohort, spanning 20
cancer types, is curated for the study. The omics modalities (CNA, RNA-seq, RPPA) are encoded into a harmonized
32-dimensional latent space using modality-specific trained autoencoders, while Whole-Slide Image (WSI) data is first
embedded using the Titan foundation model and then reduced to the same dimension via Principal Component Analysis (PCA).
(Middle Panel: Training) Two types of DDPMs are trained on these embeddings: single-condition models for one-to-one
generation (C → X), and a masked multi-condition model for many-to-one generation (C1,C2,C3 → X). (Bottom Panel:
Coherent Denoising) Our novel ensemble strategy utilizes the collection of pre-trained single-condition models to generate a
target modality at inference time. During the reverse diffusion process, at each denoising step t, every model makes an
independent prediction based on the same input vector Xt . These individual noise predictions are then aggregated, into a single
consensus vector. This consensus noise then guides the subsequent denoising step, effectively forcing the generation to satisfy
multiple conditions coherently throughout the entire process.
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fixed-length slide-level embeddings from raw WSI. Titan uses Conch 1.5 [54] as patch encoder, which crops patches of 512×512
pixels at 20× magnification. Titan outputs a slide embedding of 736×1 dimension. Inference was performed using the Trident
[55, 56] package.

Preprocessing
Gene expression data were initially provided as log2(count + 1) values. These were exponentiated to recover raw count estimates,
normalized to Counts Per Million (CPM) to adjust for library size variation, and log-transformed again as log2(CPM+1) to
stabilize variance. Genes were retained if CPM > 1.0 in at least 20% of samples, in line with standard filtering practices to
exclude low-abundance transcripts. Gene-level copy number values were derived from ABSOLUTE-based segmentations
[57]. Values equal to 0 were excluded, as they are undefined under log2 transformation and can bias downstream analyses.
Remaining values were transformed to log2 ratios relative to the diploid state (log2[CNA / 2]) and clipped to the range [–2, 2]
to reduce the influence of extreme events and outliers. RPPA values were median-centered by subtracting, for each protein,
the median expression across all samples to remove sample-independent offsets and center each distribution. All modalities
underwent standardized quality control: biological outliers were removed based on modality-specific distributions, and features
with more than 10% missing values were excluded. For the remaining data, RNA-seq and RPPA missing values were imputed
using K-nearest neighbors (KNN), while CNA missing values were imputed using the feature-wise median.

Data Splitting and Scaling
The dataset was stratified by cancer type and split into training (80%, 8,305 samples), validation (5%, 443 samples), and
test (15%, 1,350 samples) sets. Only samples with all modalities available were included in the test set in order to provide a
complete and robust ground-truth for evaluating reconstruction fidelity and downstream task performance across modalities.
All normalization, scaling and imputation procedures were applied after the split to prevent data leakage.

Autoencoder embedding
To create a dense and low-dimensional representation, a separate autoencoder was trained for each modality (CNA, RNA-
Seq, RPPA) on the training set. Each autoencoder learned to compress its respective modality into a 32-dimensional latent
representation, a dimension selected to balance information density with model complexity. For WSI data, which were already
embedded, Principal Component Analysis (PCA) was used to reduce their dimensionality.

Generative Diffusion Models
Our generative framework to synthesis of diverse biological modalities is built upon Denoising Diffusion Probabilistic Models
(DDPMs) [32, 33], which learn to reverse a fixed process that gradually adds Gaussian noise to data.

Diffusion models operate by iteratively corrupting data with Gaussian noise and then learning to reverse this process to
generate new samples. Formally, given a data sample x0 and a total of T noising steps, in the forward (noising) process, a fixed
variance schedule {βt}T

t=1 with βt ∈ (0,1) is defined. At each step t, Gaussian noise is added according to:

q(xt | xt−1) = N
(
xt |

√
1−βt xt−1, βt I

)
.

This process allows direct sampling of xt from x0:

q(xt | x0) = N
(
xt |

√
ᾱt x0, (1− ᾱt) I

)
, ᾱt =

t

∏
s=1

(1−βs).

Here, αt = 1−βt and ᾱt represents the cumulative signal retention up to step t.
The reverse (denoising) process is parameterized by a neural network εθ (xt , t) which predicts the noise component added at

step t. The reverse transition probability is defined as:

pθ (xt−1 | xt) = N
(
xt−1

∣∣ µθ (xt , t), σt
)
,

where the mean µθ (xt , t) is given by:

µθ (xt , t) =
1

√
αt

(
xt −

βt√
1− ᾱt

εθ (xt , t)
)
.

For practical implementations, we set σt = βt I.
Training involves minimizing a simplified variational bound, which effectively translates to matching the predicted noise

with the true noise. The objective function is:

L = Ex0, ε∼N (0,I)

T

∑
t=1

∥∥ε − εθ

(√
ᾱt x0 +

√
1− ᾱt ε, t

)∥∥2
.
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The term
√

ᾱt x0 +
√

1− ᾱt ε represents a sample from q(xt | x0), thereby enabling the network to learn the noise ε added at
step t.

During inference, a pure noise sample xT ∼ N (0, I) is drawn, and the learned reverse transitions pθ (xt−1 | xt) are applied
iteratively for t = T,T −1, . . . ,1 to yield a final sample x0 from the learned data distribution.

Single-Condition Diffusion Models
To generate a target modality X conditioned on a single source modality C, we trained a separate diffusion model for each
ordered pair of modalities. At each reverse step t, the neural network predicts the noise component εθ (xt , t,C). The models are
optimized using a mean-squared error (MSE) objective:

L = Ex0, ε∼N (0,I)

T

∑
t=1

∥∥ε − εθ (xt , t,C)
∥∥2
.

Multi-Condition Diffusion Models
Extending the single-condition framework, a multi-condition diffusion model is capable of handling many conditioning
modalities simultaneously. Each input modality Ci is first transformed via a linear projection. A masking strategy is implemented
to enable the network to operate regardless of input availability: if a modality Ci is missing, its projected activation is set to
zero, effectively nullifying its contribution to the subsequent layers of the network. The resulting projected vectors {eCi} are
concatenated and provided as input to the noise-prediction network εθ (xt , t,eC1 ,eC2 ,eC3). Training utilizes the same MSE
objective as the single-condition models.

Model Implementation and Training
We evaluated both multi-layer perceptrons (MLPs) and U-Net [58] as candidate architectures for all diffusion models. Contrary
to their widespread use in image-based applications, U-Nets did not demonstrate superior performance over MLPs for our
tabular embedding data. Consequently, all reported results were obtained using the simpler and more computationally efficient
MLP architecture.

Our MLP-based noise prediction network processes three inputs: the noisy data (xt), the timestep (t), and one or more
conditioning vectors (Ci). Time is encoded using standard sinusoidal positional embeddings [59], and each conditioning
vector is independently projected into a dedicated embedding space via a linear layer. The resulting embeddings are then
concatenated with the noisy data (xt ) to form the initial input to the network. Each hidden layer of the MLP consists of a linear
transformation followed by Batch Normalization and a ReLU activation function. The sinusoidal time embedding is re-injected
by concatenating it with the output of each hidden layer, ensuring the time signal is preserved throughout the network.

For hyperparameter optimization, we performed a comprehensive grid search. Key hyperparameters included learning rate
([10−4, 10−3]), batch size ([64, 128]), number of MLP layers ([4, 5, 6, 7]), MLP hidden size ([256, 512, 1024]), and dimensions
for both time ([64, 128]) and conditional embeddings ([8, 16, 32]). Optimal parameters for each model were selected based on
validation performance and are listed in Supplementary Information (Table S5).

All models were trained for up to 20,000 epochs with early stopping. The stopping criterion was based on the Mean Squared
Error (MSE) between fully denoised generated samples and their real counterparts on a held-out validation set. The model
checkpoints with the best validation scores were saved for all subsequent analyses.

Coherent Denoising
We introduce a novel ensemble generation technique termed Coherent Denoising. This approach contrasts with single,
monolithic network architectures by instead leveraging a flexible ensemble of pre-trained, single-condition diffusion mod-
els. The ensemble generates a target modality X by aggregating evidence from multiple available conditioning modalities
{C1,C2, ...,CN}.

The method is integrated directly into the iterative reverse diffusion process. The generation begins by initializing a sample
with pure Gaussian noise, xT ∼ N (0,I). Then, for each denoising step t from T down to 1, each model Mi in the ensemble
predicts a noise component, εθi(xt ,Ci, t), based on the current noisy sample xt and its corresponding conditioning data Ci. These
individual predictions are aggregated into a single consensus noise vector, εconsensus, via a weighted average:

εconsensus(xt ,{Ci}) =
N

∑
i=1

wi · εθi(xt ,Ci, t)

where the weights wi are non-negative, sum to one, and can be set to reflect model reliability (e.g., inversely proportional
to validation loss). This consensus noise is then used in the denoising update rule to compute the less-noisy sample xt−1.
Underpinning of this ensemble approach lies in the connection between diffusion models and score-based generative modeling
[60]. The noise prediction, εθ (xt ,C, t), is trained to be proportional to the score of the data distribution, ∇xt log pt(xt |C). Under
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a conditional independence assumption for the modalities {Ci} given the target X , the score of the joint conditional distribution
can be approximated by the sum of the individual conditional scores. Therefore, the weighted average of noise predictions,
εconsensus, serves as a computationally efficient proxy for the score of the joint distribution pt(xt |C1, ...,CN), guiding the reverse
process toward a sample that simultaneously satisfies all conditions.

A key challenge in ensembling generative models is ensuring the constituent models do not provide conflicting guidance,
which can degrade sample quality. We address this by monitoring the geometric agreement of the predicted noise vectors
through a process of coherence-based rejection sampling. The vector εθi represents the denoising direction proposed by model
Mi; high angular alignment among these vectors indicates "coherence". We quantify this using the pairwise cosine distance,
di j = 1−

εθi ·εθ j
∥εθi∥∥εθ j ∥

. A generation trajectory is considered to have failed convergence and is rejected if the weighted average of

these pairwise distances exceeds a predefined threshold for more than a small fraction (e.g., 5%) of the total denoising timesteps.
This acts as a quality filter, discarding samples resulting from conflicting conditional evidence.

Data Availability
The TCGA data used in this work was downloaded from the GDC Data Portal https://portal.gdc.cancer.gov/ and the UCSC
Xena Hub https://xenabrowser.net/. The code used to perform the data preprocessing, train the generative models, and reproduce
the results in this paper is available on GitHub at: https://github.com/r-marchesi/coherent-genAI.
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