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Automatic Stress Detection in Working
Environments from Smartphones’ Accelerometer

Data: A First Step
Enrique Garcia-Ceja, Venet Osmani and Oscar Mayora

Abstract—Increase in workload across many organisations and
consequent increase in occupational stress is negatively affecting
the health of the workforce. Measuring stress and other human
psychological dynamics is difficult due to subjective nature of self-
reporting and variability between and within individuals. With
the advent of smartphones it is now possible to monitor diverse
aspects of human behaviour, including objectively measured
behaviour related to psychological state and consequently stress.
We have used data from the smartphone’s built-in accelerometer
to detect behaviour that correlates with subjects stress levels.
Accelerometer sensor was chosen because it raises fewer privacy
concerns (in comparison to location, video or audio recording,
for example) and because its low power consumption makes it
suitable to be embedded in smaller wearable devices, such as
fitness trackers. 30 subjects from two different organizations were
provided with smartphones. The study lasted for 8 weeks and
was conducted in real working environments, with no constraints
whatsoever placed upon smartphone usage. The subjects reported
their perceived stress levels three times during their working
hours. Using combination of statistical models to classify self
reported stress levels, we achieved a maximum overall accuracy
of 71% for user-specific models and an accuracy of 60% for the
use of similar-users models, relying solely on data from a single
accelerometer.

Index Terms—automatic stress detection, health monitoring,
accelerometer, smartphones, ambient intelligence, health and
well-being.

I. INTRODUCTION

THE competitive nature of the world economy and the
use of advanced information and communication tech-

nologies has changed the nature of workplace environments,
ensuring increased connectivity and consequently reachability
of workers even outside working hours. This has resulted in
an increase of workload [1], which has become a common
issue in many organisations, where employees experience psy-
chological problems related to occupational stress. According
to the Fourth European Working Conditions Survey (EWCS),
work-related stress was reported by 22% of workers from 27
Member states of the European Union [2]. Furthermore, higher
prevalence of stress has been reported in North America,
where 55% of population has reported increased workload
having a significant impact on physical and mental health as
described in APA Survey [3].
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Occupational stress has been proven to contribute to disease
activation. Several research studies have found that stress at
work is associated with cardiovascular diseases [4], mus-
culoskeletal diseases [5], immunological problems [6], and
problems with mental health such as anxiety and depression
disorders [7]. In regard to organizational well-being, a decline
of physical and mental health of workers has been reported
in Paoli et al.[8], leading to a decrease in the performance,
decrease in overall productivity of organization and increased
cost in terms of absenteeism. Experiencing work-related stress
is common in working environments and low levels of stress
can even result in productivity increase [9]. However, stress
responses of employees are triggered when work-related pres-
sure (such as quantity of work to be accomplished in a short
period of time, pressure to work overtime, low social support,
job insecurity and lesser breaks or holidays) challenge the
human ability to cope with them.

Considering detrimental effects of prolonged exposure to
stress both for employees and organizations, there is a clear
need for a system that can continuously monitor behaviour
of workers and correlate various behaviour aspects with
perceived stress levels. Several research works have used
different sensing technologies, such as sound analysis [10],
image processing from cameras [11] and physiological sensors
[12] to detect stress. Considering privacy concerns when
using cameras and microphones, physiological measures have
become an increasingly popular approach for measuring stress-
related signs from sensor data (typically GSR and heart-rate
sensors), such as work in [13]. However, there are several
concerns about using physiological sensors, principally due to
their obtrusive nature, lack of comfort and ability to be worn
continuously [14], consequently impacting natural behaviour
of the subjects.

With these points in mind, and based on our previous studies
[15], [16], smartphones have a distinct advantage in that they
are already familiar and widely adopted devices, thus minimis-
ing ”observer effect” and do not pose additional discomfort
on the monitored subjects [17], [18]. Using smartphones to
monitor behaviour of subjects, we report the results of our
study in detecting stress levels in real working environments.
We recruited 30 subjects from two different organizations
that participated in our 8 week study, where each participant
reported perceived stress levels three times during working
hours using self-assessment questionnaire.

Through the use of a combination of statistical models to
classify self reported stress levels, we achieved an overall
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accuracy of 71% for user-specific models and 60% for the use
of similar-users models. These results are comparable to the
state of the art results in stress recognition, with the difference
that our work relies solely on a single triaxial accelerometer
sensor. Furthermore, we also developed classification models
using data from similar users, when building individual models
was not feasible due to scarce data. Lastly, we evaluate the use
of an ordinal classifier to take into account the class ordering
information of the different stress levels.

Relying on a single accelerometer as the only sensor in
detecting stress is especially promising when considering
exponential rise of personal activity trackers (such as FitBit or
Jawbone) that typically contain a single embedded accelerom-
eter.

The rest of the paper is organized as follows: Section II
summarises previous research works for monitoring stress
events from individuals in work- and real-life settings. Sec-
tion III provides information about the group selection for the
study, and how the data was collected. The details of data
preprocessing are given in Section IV. Section V presents an
exploratory data analysis as a first step towards building sta-
tistical classification models. Section VI presents the details of
the different schemes used to classify stress levels. Section VII
describes the experiments and results of our study. Conclusions
and future research directions are given in Section VIII.

II. RELATED WORK

There have been several works that aim to detect stress
in an automatic manner. For example, Carneiro et al. [19]
used video cameras, accelerometers, touchscreens to extract
different features while inducing different levels of stress
during an electronic game session. Their experiments included
19 subjects and they used a J48 tree to classify touches
as stressed or not achieving an accuracy of 78%. In [20],
Giakoumis et al. used video, accelerometers at the user’s
knees, galvanic skin response and electrocardiogram sensors
to detect stress. There were 21 participants in their study and
the Stroop color test [21] was used to induce stress. Their
results showed that using behavioural features together with
physiological measures helped to increase the stress detection
accuracy compared when using just physiological features.
Recently, there has also been research to detect stress outside
lab environments by using wearable sensors. Lu et al. [22]
implemented an application running in a smartphone to detect
stress using voice as input. Sano & Picard [17] used data
collected from a wrist sensor, surveys and a mobile phone
to classify stressed and not stressed states achieving results of
over 75% accuracy.

Two types of setups that have been used in previous
works can be identified: In-lab experiments and unconstrained
experiments. In-lab experiments are performed with controlled
conditions, i.e., subjects are required to stay within an specific
physical place and to follow a standard protocol. This protocol
generally consists of filling surveys and performing a series of
experiments in a specific order. In an unconstrained setup, the
subject is generally given a set of wearable sensors and the
data is collected while the subject performs their daily routines
without following any predefined schedule.

TABLE I
CLASSIFICATION OF DIFFERENT RELATED WORKS. TYPE COLUMN

INDICATES IF THE EXPERIMENT WAS PERFORMED IN-LAB OR IN AN
UNCONSTRAINED ENVIRONMENT AND THE TYPE OF STRESSORS USED:

CONTROLLED, UNCONTROLLED, UNKNOWN.

Work Type Data sources Details

Carneiro et
al. [19]

In-lab,
controlled

video cameras,
accelerometers,

pressure-
sensitive

touchscreens

19 subjects. 78%
accuracy in

classifying touches
as stressed or not
using a J48 tree.

Giakoumis
et al. [20]

In-lab,
controlled

video,
accelerometers at

users’ knees,
Galvanic skin
response, elec-
trocardiogram

21 subjects. Avg.
accuracy of 100%
for their dataset 1

and 96.6% for
dataset 2 when

using all sensors.

Sun et al.
[26]

In-lab,
controlled

electrocardio-
gram, galvanic
skin response,
accelerometer

20 subjects. Overall
accuracy 92.4% for

10-fold cross
validation and
80.9% between

subjects
classification.

Bauer &
Lukowicz

[18]

uncon-
strained,
uncon-
trolled

gps, wi-fi,
bluetooth, call

logs, sms

7 subjects.
Detected a change

of behaviour during
stress periods of

approx. 86% of the
participants.

Lu et al.
[22]

In-lab,
uncon-

strained,
uncon-
trolled

audio

14 subjects.
accuracy of 81%

and 76% for indoor
and outdoor

environments with
model adaptation.

Muaremi
et al. [27]

uncon-
strained,
unknown

heart rate, audio,
acceleration, gps,

calls, contacts,
etc.

35 subjects. 61%
accuracy for user

specific models and
53% for a general

model.

Sano &
Picard [17]

uncon-
strained,
unknown

accelerometer,
skin

conductance,
calls, sms,

location, screen

18 subjects.
Accuracies over

75%

Bogo-
molov et
al. [28]

uncon-
strained,
unknown

call logs, sms,
bluetooth

117 subjects. An
overall recognition

accuracy of 72.39%
with Random forest

model.

Table I presents a summary of related works on automatic
stress detection and classified according to the type of ex-
periment: In-lab, unconstrained and the type of stressors:
controlled, uncontrolled and unknown. This work differs from
the previous work in the following aspects: 1) The data was
collected in an unconstrained out of the lab environment and
with unknown stressors using only an accelerometer sensor
from smartphone; 2) We explore the potential of using data
from a single source (accelerometer) to detect acute stress
levels. We chose this sensor because it is non-visual and non-
auditory, and thus mitigates privacy concerns and does not
interfere with the individual’s daily routines [23], [24], [25];
and 3) We built classification models using data from similar
users in cases when building individual models is not feasible
due to scarce data.
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III. DATA COLLECTION

Behavioural data were obtained using the built-in sensors
of Samsung Galaxy SIII Mini smartphones. The data were
collected with the written, informed consent of all participants
and stored in the memory of the smartphone using the applica-
tion developed by our team. Additional information pertaining
to the usage of apps and contextual information such as
location, accelerometer, social activities, phone calls, SMS,
Wi-Fi, and proximity was also recorded. However, in this work
we analysed only the data from the triaxial accelerometer,
recorded continuously. Given that the phone application col-
lected data from several sensors, the accelerometer sampling
rate was set at 5 Hz in order to optimise the battery life. This
was adequate for our analysis since work in [29] showed that
with a sampling rate of 5 Hz it is still possible to recognize
physical activities with an accuracy of 94.98%, while we are
not analysing short, fine grained movements (as in activity or
gesture recognition) but rather focus on the overall behaviour
that spans several minutes.

We also collected subjective information related to subjects’
stress and psychological states involving a series of ques-
tions/answers gathered from a survey. These questions were
derived from a clinically validated burnout questionnaire; the
Oldenburg Burnout Inventory (OLBI) [12]. Subjective psycho-
logical scores for stress, were reported in a questionnaire three
times during the working days (morning, afternoon, and end
of workday) on a 5-point scale. This information was then
converted into an ordinal scale to represent stress levels as
low, medium and high, due to inherent differences in subjective
reporting of stress levels between individuals and also within
individuals [30], that is, for one user the value of 4 may
mean ’highly stressed’ whereas for another ’a little bit above
normal’. Grouping the ratings into a smaller number of ordinal
points alleviates some of the inherent subjectivity.

A. Participants

Sensor data was collected from 30 healthy subjects and
analysed with self-reported stress data for a period of 8
weeks, excluding weekends. Due to user compliance issues,
the average number of data collection days per user was 29±6.
Furthermore, some surveys during the day were occasionally
skipped by the users. The participants used the phone from
morning until the end of the work day, without any restrictions
whatsoever placed upon the use of the phone in a specific man-
ner. In order to get insights in the working style and gain more
knowledge from employees in their working environments,
we chose to recruit participants from two different companies
located in province of Trentino, Italy. The study involved 18
(60%) males and 12 (40%) females aged 37.46±7.26 years.
Participants were informed that the goal of the study was to
monitor behaviour activities relevant to stress. All participants
consented to participate in the study and to have their data
recorded. They were also informed that all the collected data
was anonymous and will be used for research purposes only.

IV. PRE-PROCESSING

Feature extraction

From the raw accelerometer data a total of 34 features
from time and frequency domain were extracted. The feature
extraction was performed on non-overlapping fixed length
windows of 128 samples (25.6 seconds.). The 34 features
were: Mean x axis, Mean y axis, Mean z axis, StdDev x axis,
StdDev y axis, StdDev z axis, Variance x axis, Variance y axis,
Variance z axis, Variance 3 axes, Mean 3 axes, Max 3 axes,
Min 3 axes, Standard Deviation 3 axes, Absolute Value 3 axes,
Median 3 axes, Range 3 axes, Variance Sum [31], Magnitude
Eq.(1), Signal Magnitude Area Eq.(2), Root Mean Squared
Eq.(3), Curve Length Eq.(4), Non Linear Energy [32], En-
tropy: differential entropy from time domain magnitude Eq.(5)
[33], Energy: which is the sum of the squared discrete FFT
component magnitudes of the signal. Eq.(6) [34], Mean En-
ergy, StdDev Energy, DFT (Discrete Fourier Transform), Peak
Magnitude which is the maximum value of the magnitude.
Eq.(7), Peak Magnitude Frequency which is the frequency
that corresponds to the maximum magnitude. Eq.(8), Peak
Power which is analogous to peak magnitude but on the power
spectrum, Peak Power Frequency this is analogous to peak
magnitude frequency, Magnitude Entropy Eq.(9) and Power
Shannon Entropy same as Magnitude Entropy but over the
power spectrum.

Magnitude =
1

n

n∑
i=1

√
x2i + y2i + z2i (1)

SMA =
1

T

∫ T

o

x(t)|dt+
∫ T

o

y(t)|dt+
∫ T

o

z(t)|dt (2)

RMS =

√
1

n
(x21 + x22 + · · ·+ x2n) (3)

curvelength =

N∑
i=2

|xi−1 − xi| (4)

h(X) =

∫
X
f(x) log f(x)dx (5)

energy =

(n/2)∑
i=1

x[i]
2 (6)

pm = max
i=1..(n/2)

xi (7)

pmf = argmax
i=1..(n/2)

xi (8)

H(X) = −
N−1∑
i=0

pilog2pi (9)

Self-reported Stress
The stress scale in the survey has the scale 1 to 5, where

1 means least stressed and 5 means most stressed. For the
purpose of our analysis we grouped those values into three
groups: low stress for values of 1 and 2; medium stress for a
value of 3; and high stress for values of 4 and 5.

For our analysis, we considered observations from the sec-
ond and third surveys only because there is no accelerometer
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data before the first survey (beginning of the day). To charac-
terize each survey, we took the features from the previous
2 hours for each survey and computed summary statistics
which will be used as the final features: mean, maximum and
minimum value of each of the 34 features giving a total of
102 features. Table II shows the total number of observations
for each of the stress levels.

TABLE II
TOTAL NUMBER OF OBSERVATIONS FOR THE SECOND AND THIRD

SURVEYS

Stress level: Low Medium High

# observations 667 521 329 Total: 1,517

V. EXPLORATORY DATA ANALYSIS

In this section we present a general overview of the data.
Figure 1 shows the average of the self reported stress level
scores by weekday over all users using data from the 3 surveys.
It can be seen that the maximum stress level is reported on
Tuesday and then begins to decrease towards its minimum on
Friday. The resulting standard error bars overlap with each
other suggesting that the differences between days are not
significant, confirmed with an analysis of variance test.
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Fig. 1. Average stress levels by weekday with standard error bars of the
mean.

Now we investigate whether extracted features could be
used as potential predictors for stress levels. Figure 2 shows
the estimated density function for the Entropy feature over
all users. Vertical lines indicate the median. Through visual
inspection, the difference between the median of the Entropy
for high stress is clearly visible from that of low stress. The
difference between medium and low stress is also clear and
the difference between high and medium is still noticeable
but smaller. It seems that Entropy is a good candidate feature
(independently of the others) to differentiate between high/low
and medium/low stress levels but it may have difficulties
differentiating between high/medium stress levels.

To see whether or not a specific feature is significantly
different between every pair of possible stress levels (low/high,
low/medium and high/medium) for each of the users, a Mann
Whitney U test [35] was performed with a significance level
α = 0.01 and bonferroni p-values correction. This test was
chosen because it is non-parametric and most of the feature

distributions are not normal. The results of the statistical
test indicated that for most of the features and users the
differences were significant (except for the Peak Magnitude
feature). However, this does not necessarily mean that most
of the features will be good predictors since the differences
may be to small to be detected or to be useful to a given
classifier model. In order to check the effect size of each
of the features we computed the Cohen’s d effect size and
quantified it using the thresholds defined in [36], i.e., |d| < 0.2
‘negligible’, |d| < 0.5 ‘small’, |d| < 0.8 ‘medium’, otherwise
‘large’. The results of this test indicated that for almost half
of the features the effect size was at least medium. Despite
the fact that almost all features are different for each of the
stress levels, their effect sizes are small and just a few of
them are medium or large for some of the users (details
of the statistical results for each feature were omitted due
to space constraints). These exploratory results suggest that
some of the features (independently of the others) can be
used as potential predictors of stress levels. Next, we will
use multivariate statistical models and feature selection to
find combinations of good discriminative features to detect
stress levels. Since we quantified the original stress levels as
three different classes {low, medium, high} we will state the
problem as a classification problem. Given the set of computed
features from the accelerometer data we want to predict the
users’ self-reported stress levels. In this case we will use
multivariate classification models which are discussed in the
next section.
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Fig. 2. Estimated density for Entropy feature. Vertical lines represent the
median

VI. STATISTICAL MODELS

The results from the exploratory data analysis suggest that
we could use some of the features as predictors to classify the
different stress levels. For this purpose, we are going to use
two classification models namely: 1) Naive Bayes [37] (pp.
90-97) and 2) Decision Trees [38] (ch. 7).

As we discussed earlier, some of the features may increase
the performance of the classifiers while others may have the
opposite effect. To find good combinations of features to build
the models we used a feature selection method called Forward
Feature Selection [39] (pp. 207) which consists of adding
predictors one by one to the model and at each step the variable
that increases performance criteria the most is retained. In this
case we used accuracy as the performance criteria.
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A. Model Schemes

In recent related works it has been common to build user-
specific and general models to classify stress levels [27], [22].
For the user-specific case, individual models are trained and
evaluated for each of the users using their own data. The
general model consists of building the model with data from
all the users. This can be done by aggregating all the data
from all the users or for each specific user i build a model
with the data from all other users j, j 6= i and test the model
with the data from user i. The latter approach is sometimes
referred to as leave one person out. In Lu et al. [22] they also
used an hybrid approach called model adaptation which starts
with a general model and gets adapted to each individual as
more data is available.

Following this methodology, we used the user-specific and
the general model approach. For the general model we used
the leave one person out scheme. We also built similar-users
models which differ from the general model in that instead
of building one model for a user i using observations from
all other users j,j 6= i, the model for user i is built using
observations from just a subset of similar users. The rationale
behind this scheme is that for any two users, their behavioural
patterns across stress levels may be different. For example,
a user may tend to be more active when he is stressed but
another one may tend to be more sedentary when stressed.

Building a single model that includes users with different
behaviour patterns is not desirable since this will introduce
noise. Rather, we may want to build a model for a specific
user with data just from similar users. In this case, even if
there is not yet enough data to build an user-specific model a
system could build a model from similar users and start giving
feedback until there is sufficient data to build an individual
model.

Similar-users Model: Here, the idea is to build a model to
predict stress levels for the test user ut using data from the set
of users S, where S is the set of users with similar behaviour
to ut. The behaviour of each user will be represented by a
single vector bi of size =

(|C|
2

)
|F | where |C| is the number of

classes and |F | is the number of features. In this case
(|C|

2

)
= 3

which corresponds to every possible combination of stress
levels: low-medium, low-high, medium-high. For each feature
we want to know how does the median value changes between
the different pairs of stress levels. For example, for one user
the difference between median(f1low)−median(f1high

) may
be positive but for other user it may be negative where
median(f1low) is the median of a specific feature when the
stress level is low (and the same applies for all other levels).
The behaviour vector bi is constructed by computing for each
feature, the difference of the medians between every pair of
stress levels.

To find S we used k-means clustering to group the be-
haviour vectors bi, i 6= t into k groups G1..k and let
S be the group who’s centroid has the minimum distance
to the behaviour vector of the test user bt, i.e., S =
argminG1..k

dist(bt, centroid(Gi)). Since ut is the test user,
bt is computed using only a random subset Ot,p of the total
observations of user t where p indicates what percentage of the

total observations was taken. The subset Ot,p of observations
that was used to construct bt to find the similar users is
discarded when evaluating the model to avoid over-fitting.

The k-means algorithm requires to specify the number k
of desired groups. To find a good approximation of k we
used the silhouette index [40] which is a measure of the
quality of the resulting groups. The k-means algorithm is
run for k = 2, 3, .., upperbound and the k that maximizes
the silhouette index is chosen as the final number of groups.
Figure 3 shows an example of the resulting silhouette plot
when grouping similar users to build a model for some specific
subject when k = 2. In this plot each line represents a
behaviour vector b and its length represents its silhouette width
s(i). A s(i) close to 1 means that the feature vector i is well
clustered, i.e., there is little doubt that i has been assigned
to an appropriate group. The overall silhouette index is the
average of all s(i) and in this case it was 0.32. It can be seen
that some feature vectors had a silhouette width less than or
close to 0. This means that it is not clear whether these feature
vectors should have been assigned to another cluster. Figure 4
shows the silhouette plot for k = 3. In this case the silhouette
index was 0.2 which is much lower and in the first cluster
almost all data points have a silhouette width close to 0. For
k = 4, 5 the silhouette index was 0.2 and 0.18 respectively,
thus, k = 2 was chosen as the number of final clusters for this
specific user. Note that the plots have 26 bars (users) instead
of the expected 29. This is because some users did not report
high stress levels and thus they have missing values in their
behaviour vectors in which case they were excluded from the
clustering phase. On the other hand, if the test user ut did not
report high stress levels, the columns with high stress levels
of the other users’ behaviour vectors are truncated and thus,
all other 29 users were included in the clustering procedure.

Silhouette with

Fig. 3. Silhouette plot for k = 2 with resulting silhouette index of 0.32. Line
colors represent the different clusters.

Silhouette width

Fig. 4. Silhouette plot for k = 3 with resulting silhouette index of 0.2. Line
colors represent the different clusters.
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B. Ordinal Classification

Typically, classification algorithms assume that the response
class is unordered but there are situations in which there is
a natural ordering of the response variable, i.e., an ordinal
class. Ordinal variables are typically found in surveys’ re-
sponses for example, Very poor, Poor, Fair, Good, Excellent.
For our case we have: low < medium < high stress levels.
In order to take into account this ordering information, we
also implemented an ordinal classification approach described
by Frank & Hall [41] which enables standard classification
algorithms to make use of ordering information. This approach
consists of transforming a k-class ordinal problem into k-1
binary class problems and computing the probability of each
of the k ordinal classes. The final prediction is the class with
maximum probability. We applied this approach with the Naive
Bayes classifier.

From the performance measurement point of view, usually,
the classifiers are assessed with measures appropriate for
unordered classes. These measures treat all errors as equal,
e.g., confusing low with medium has the same error weight as
confusing low with high but clearly, the latter error should be
more severely penalized as discussed in [27]. In [42] several
performance measures for ordinal classes were evaluated. For
example, Mean Squared Error (MSE) is more suitable when
the severity of the errors is more important while Mean
Absolute Error (MAE) is preferred in situations where the
tolerance for small errors is lower. Another performance mea-
sure is the Linear Correlation. A strong correlation between
the predictions and the ground truth is an indication of a good
classifier. A more optimistic measure is the Accuracy within
n (ACC1, ACC2,.., ACCn) which allows a wider range of
outputs to be considered correct. For example, if the correct
output is 4, outputs of 3,4 and 5 are considered as correct
for n = 1, i.e., ACC1. The usual accuracy measure would be
ACC0.

VII. EXPERIMENTS AND RESULTS

In this section we present the results for the three model
schemes discussed in Section VI-A: user-specific, general and
similar-users models. In the Feature Forward Selection step,
for each of the candidate feature subsets 5-fold cross validation
is performed in the case of user-specific models and leave one
person out cross validation for the general and similar-users
models. For the similar-users model, 50% of the data was used
to find the most similar users, i.e., Oi,50. We used the following
performance measures that take into account the ordinal nature
of the response variable to evaluate the models: Mean Absolute
Error (MAE), Root Mean Squared Error (RMSE), Pearson
Correlation (Pearson cor), Spearman Correlation (Spearman
cor) and Accuracy within 1 (ACC1).

In our experiments, 4 classifiers were used: Naive Bayes;
Decision Tree; Ordinal Naive Bayes which uses the approach
described in Section VI-B; and as a baseline a Random
classifier which randomly predicts a class based on their
prior probabilities. Table III shows the results for the user-
specific models. Here we can see that all classifiers (except
Random) had a similar overall performance. Note that the

ACC1 measure is very optimistic. The Random classifier had
an ACC1 = 0.81. this is because an output will be counted
as an error only if the prediction is low and the actual
class is high or vice versa. For the user-specific case, the
10 most frequently selected features (in descending order)
were: Magnitude, Standard Deviation of the 3 axes, Minimum
Energy, Maximum of the 3 axes, Peak Magnitude Frequency,
Minimum variance Y, Maximum of variance sum, Max Range
of the 3 axes, Maximum Mean Energy and Variance sum.

Table IV shows the results for the general model scheme. As
expected, the overall performance is much lower than that of
the user-specific scheme. Again all classifiers (except Random)
had similar overall performances. The Random classifier had
Pearson and Spearman correlations close to 0 while for the
other models the correlation was stronger but still weak. The
Ordinal Naive Bayes classifier did not present any improve-
ment over the traditional Naive Bayes. The reason of this lack
of improvement when including ordering information may be
that in this case the number of classes is just 3 and as suggested
by Frank & Hall [41] “ordering information becomes more
useful as the number of classes increases.”.

Table V shows the results for the similar-users model for
Naive Bayes and Decision tree. The Ordinal Naive Bayes was
omitted since it did not present any performance improvement
in the previous cases. With respect to the general model, the
similar-users model had an increase of 8% in accuracy for
Naive Bayes and 5% for the Decision Tree.
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Fig. 5. Comparison between general models, similar users models and user
specific models.

VIII. CONCLUSIONS

This work was a first step in evaluating the potential of
mobile phones as stress detectors in working environments.
The data was collected in an unconstrained environment with
unknown stressors. We used accelerometer data to characterise
subjects’ behaviour by extracting time domain and frequency
domain features. Then, statistical models were built to classify
different self-reported stress levels. For our experiments, we
also evaluated an ordinal classification method, which had
no improvement in the overall performance, possibly due to
the small number of classes (just 3). User-specific models
performed the best since they are targeted for each specific
user but they require more labelled data. On the other hand,
general models had a lower overall performance but they don’t
require user specific labelled data which is sometimes tedious
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TABLE III
USER-SPECIFIC MODEL RESULTS

Random Naive Bayes Ordinal Naive Bayes Decision Tree
low medium high low medium high low medium high low medium high

Sensitivity 0.57 0.41 0.34 0.82 0.65 0.59 0.82 0.62 0.57 0.79 0.66 0.62
Specificity 0.68 0.69 0.8 0.81 0.82 0.91 0.79 0.82 0.91 0.82 0.83 0.9
Precision 0.58 0.41 0.32 0.77 0.65 0.66 0.75 0.65 0.65 0.77 0.67 0.63
Accuracy 0.46 0.71 0.7 0.71

MAE 0.66 0.33 0.35 0.34
RMSE 0.96 0.65 0.67 0.68

Pearson cor 0.24 0.63 0.62 0.61
Spearman cor 0.25 0.64 0.62 0.62

ACC1 0.86 0.95 0.95 0.94

TABLE IV
GENERAL MODEL RESULTS

Random Naive Bayes Ordinal Naive Bayes Decision Tree
low medium high low medium high low medium high low medium high

Sensitivity 0.41 0.33 0.24 0.94 0.18 0.2 0.91 0.18 0.22 0.84 0.19 0.28
Specificity 0.58 0.63 0.77 0.3 0.91 0.95 0.33 0.89 0.94 0.39 0.85 0.91
Precision 0.43 0.32 0.23 0.51 0.53 0.55 0.51 0.47 0.54 0.52 0.41 0.47
Accuracy 0.35 0.52 0.51 0.5

MAE 0.83 0.62 0.61 0.62
RMSE 1 0.95 0.94 0.94

Pearson cor 0.01 0.32 0.33 0.31
Spearman cor 0.01 0.32 0.33 0.31

ACC1 0.81 0.85 0.86 0.87

TABLE V
SIMILAR-USERS MODEL RESULTS

Naive Bayes Decision Tree
low medium high low medium high

Sensitivity 0.6 0.58 0.6 0.64 0.64 0.24
Specificity 0.83 0.69 0.86 0.76 0.58 0.95
Precision 0.73 0.5 0.55 0.67 0.44 0.59
Accuracy 0.6 0.55

MAE 0.45 0.49
RMSE 0.75 0.76

Pearson cor 0.52 0.43
Spearman cor 0.52 0.44

ACC1 0.94 0.95

and time consuming to record. We proposed a similar-users
model in which a small amount of labelled data is used to
find similar users and a classifier is built. According to our
results, this proved to be a middle point between general
and user-specific models, allowing a future system to begin
providing feedback to the users on the onset, using general
model and as more labelled data is available similar-users and
user-specific models could be built. The results we achieved
are similar to the results found during literature review, with
the difference that in our work we used a single accelerometer
sensor only. This could open the possibility to implement a
stress recognition system in personal fitness devices, which
currently track physical activity only. Our follow-up study will
extend data collection period to several months and include
higher number of users in the experiments. Further analysis
will focus on analysis of specific situations when the person
is handling the phone (such as during phone call, text writing),
which may provide a more fine grained insight into the users’
behaviour.
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