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Abstract 
 

Background: Bias in medical practice is multifaceted, including treatment variations across race-
ethnicity, unconscious bias in healthcare providers’ attitudes, and bias in clinical scores. However, far 
less is known about the potential racial bias in routinely collected, essential information in clinical 
decision-making, namely vital signs. 

Research question: Do vital signs embed racial information that can be learned by AI algorithms? 

Study Design and Methods: Retrospective cohort study of critically ill patients between 2014 and 2015 
from the multi-centre eICU-CRD critical care database involving 335 Intensive Care Units (ICU) based 
in 208 US hospitals, containing 200,859 patient admissions. We extracted 10,763 critical care 
admissions of patients aged 18 and over, alive during the first 24 hours after admission to ICU with 
recorded self-reported race as well as at least two measurement of heart rate, oxygen saturation, 
respiratory rate, and blood pressure. Pairs of racial subgroups were matched based on age, gender, 
admission diagnosis and APACHE IV scores. Traditional machine learning algorithms, including 
XGBoost and Logistic regression were used to predict self-reported race using values of vital signs as 
an input. 

Results: AI models derived from only six vital signs can predict patients’ self-reported race with an 
AUC of 0.74 (± 0.022) between White and Black patients. Technologies used to measure oxygen 
saturation are a significant source of self-reported racial information (AUC of 0.72 ± 0.028), in addition 
to blood pressure measurements (AUC of 0.63 ± 0.035). Care delivery practices do not present a 
significant source of racial information (AUC of 0.57 ± 0.019). However, even when controlling for 
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these known factors, self-reported race can still be learned from vital signs, whose origin we cannot 
currently explain. 

Interpretation: Vital signs embed racial information that can be learned by AI algorithms, posing a 
significant risk to equitable clinical decision-making. Mitigating measures might be challenging, 
considering fundamental role of vital signs. 

1 Introduction 
As a subset of AI, machine learning (ML) algorithms are evolving to tackle increasingly complex clinical 
challenges 1–3. A general appeal is that clinical practice is likely to benefit from algorithmic assisted 
decision-making by optimising clinical workflows, diagnostic interventions, and enhancing 
personalised precision care. It is likely that some of the insights derived from these algorithms will 
assist in clinical decision-making where patients’ lives are at risk. Therefore, it is essential that ML 
algorithms that become integrated as part of decision-making in clinical practice be robust, reliable, 
and unbiased. 

Health care disparities resulting from discrimination and bias are pervasive.  These can be encoded in 
algorithms trained on clinical data captured in electronic health records. Existing inequities can be 
perpetuated or even magnified by algorithms developed to inform decision-making because of bias in 
the data used to develop the models, bias introduced during the model development, or bias during 
deployment and post-deployment monitoring. Any of these can result in decision-making that can be 
discriminatory and harmful to socially disadvantaged population groups that are not adequately 
represented in the data. 

Treatment variation across race-ethnicity that is not explained by patient or disease factors has been 
detailed in several studies, accompanied by significant evidence of unconscious bias in healthcare 
providers’ attitudes, expectations, and behaviour 4–6. The presence of this type of bias in medical 
practice is further amplified if the discriminatory attitudes and behaviours are in turn modelled as 
disease mechanisms or as decision support algorithms that are implemented by care providers. This 
phenomenon is described by Brooks in an opinion piece that framed unconscious bias as a “silent 
curriculum” 7. Furthermore, a recent study illustrates racial bias in the descriptions of patients’ 
electronic health records (EHR), showing that Black patients are 2.5 times more likely to have one or 
more negative descriptors in their EHR compared with White patients 8.  

Bias embedded in data has been illustrated by Obermeyer et al. where “at a given risk score, Black 
patients are considerably sicker than White patients, as evidenced by signs of uncontrolled illnesses.”.  
The algorithm learned to predict care costs, placing Black patients in the same risk category as a subset 
of White patients, while having considerably worse symptoms 9. To add to the severity of the problem, 
the number of Black patients who should have been referred for complex care was reduced by half 
based on the recommendation of the ML algorithm. 

While there is awareness of bias in clinical scores, far less is known about the potential racial bias in 
routinely collected, essential information in clinical decision-making, namely vital signs. Therefore, we 
sought to investigate whether self-reported race can be learned from routine measurements of vital 
signs. If sensitive attributes such as race-ethnicity are easily learned from essential clinical data, then 
it is of significant concern if these attributes become an embedded part of clinical decision-making 
and treatment optimisation. 

2 Methods 
This study followed the Strengthening the Reporting of Observational Studies in Epidemiology 
(STROBE) reporting guidelines 10. Given that our patient cohort is made up of predominantly White 
patients, we devised a matching cohort to mitigate representation bias of other races. We matched 
patients of different races based on admission diagnosis, gender, age, and Acute Physiology and 
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Chronic Health Evaluation (APACHE IV) score to equally represent the three population subgroups 
considered in our study, namely Black, Hispanic, and White patients. Classical ML algorithms (Logistic 
Regression (LR) and XGBoost 11) were then used to investigate whether the patients’ self-reported 
race can be predicted using solely patients' vital signs. 

2.1 Clinical data sources and study population 

We used the eICU Collaborative Research Database (eICU-CRD) containing 200,859 admissions 
collected from 335 ICUs across 208 hospitals in the United States (US) admitted between 2014 and 
2015 12. We selected all adult patients (age 18 and over) that were alive within the first 24 hours after 
ICU admission and had at least one clinically valid measurement for all the vital signs considered for 
this study: heart rate, SpO2, SaO2, respiratory rate, non-invasive, and invasive blood pressure (systolic, 
diastolic, and mean). There were insufficient measurements of temperature. We selected data from 
the first 24 hours, given that a patient’s presenting vital signs inform follow-up and life-saving 
interventions.  This means that potentially biased data during this critical period have the potential to 
carry most harm. We extracted mean, minimum, maximum, and variance of the selected vital signs. 
Patients with missing APACHE IV score, admission diagnosis, age, or gender were excluded from the 
study. Inclusion of the three dominant racial groups resulted in a total of 10,763 patients, of which 
9,215 (85%) were White, 1,066 (10%) were Black, and 482 (5%) were Hispanic. Since significantly less 
data was available for Asian American and Native American patients (177 and 84 respectively) they 
were not included in this study. 

Cohort matching resulted in 844 Black patients matched to the same number of White patients, 392 
Hispanic patients matched to the same number of White patients, and 222 Hispanic patients matched 
to the same number of Black patients.  

2.2 Statistical analysis 

Baseline characteristics of the patients were analysed using medians (IQRs) for continuous variables 
and frequencies (percentages) for categorical variables. We used the Kruskal–Wallis test (one-way 
ANOVA) for continuous variables and the chi-square test for categorical variables to compare different 
racial and ethnic subgroups. Due to the selection criteria (shown in Appendix 2) no patients with 
missing data remained. 

2.3 Model development and validation 

We analysed binary outcomes, namely whether vital signs can predict self-reported races of Black 
versus White. We carried out the same analysis for Hispanic and White patients, and Hispanic and 
Black patients. We used two ML algorithms to derive the models and evaluate their performance, 
namely Logistic Regression (LR) and XGBoost11. As XGBoost is prone to overfitting, we evaluated two 
versions of the XGBoost algorithm: version with the default parameters, and an optimised version 
(with parameters selected using random search13). We also evaluated a shallow neural network, which 
did not result in a significant performance improvement. 

We used stratified 5-fold cross-validation to evaluate the models, meaning the data were divided into 
5 folds so each fold maintains the original distribution class-wise. Model derivation was performed on 
4 folds, while the remaining fold was used to validate the model’s performance. We repeated this 
process 5 times, for each of the folds, and the final results were averaged over all folds. We assessed 
the performance of our models by computing the area under the receiver operator characteristic 
curve (AUC-ROC). 

3 Results 
Out of 10,763 patients, 1,688 met the inclusion criteria for the first matched cohort (Black and White 
patients), 784 for the second pair of matched cohorts (Hispanic and White patients) and 444 for the 
third matched cohort (Hispanic and Black patients). The patient baseline characteristics for each of 
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the matched cohorts are summarised in Table 1. Initially, we investigated prediction of self-reported 
race using heart rate, SpO2, SaO2, respiratory rate, and blood pressure (systolic, diastolic, and MAP 
measured through arm cuff as well as invasively). Then, we performed sensitivity analysis, focusing 
solely on patients with known comorbidities.  

Table 1 Patient characteristics for each of the matched cohorts from the eICU-CRD database 

 Black and White matched patient 
cohort 

Hispanic and White matched patient 
cohort 

Hispanic and Black matched patient 
cohort 

Clinical 
values Black White p-value Hispanic White p-value Hispanic Black p-value 

Patients  844 844 - 392 392 - 222 222 - 
Gender 
(male) 

457 (51.7%) 483 (57.23%) - 236 (60.2%) 238 (60.7%) - 141 (63.5%) 127 (57.21%) - 

Age 60 [51, 69] 65 [56, 73] < 0.05 63 [53, 73] 66 [57, 73] < 0.05 63 [54, 73] 62 [52, 70] 0.151 
Heart rate 87 [75, 99] 84 [73, 97] < 0.05 84 [73, 97] 83 [73, 96] < 0.05 84 [74, 96] 86 [76, 98] < 0.05 
Invasive 
Oxygen 
Saturation 

97.6 [95, 99] 97.4 [95, 99] < 0.05 97 [95, 99] 97 [95, 99] 0.07 97 [95, 99] 97 [95, 99] < 0.05 

Oxygen 
Saturation 
(Pulse Ox) 

99 [97, 100] 98 [95, 99] < 0.05 98 [96, 100] 97 [95, 99] < 0.05 98 [96, 100] 99 [96, 100] < 0.05 

Respiration 
rate 19 [15, 24] 19 [16, 23] < 0.05 19 [16, 23] 19 [15, 23] < 0.05 19 [16, 23] 19 [15, 24] < 0.05 

Invasive 
Systolic BP 

123 [107, 
141] 

120 [106, 
138] < 0.05 122 [108, 

138] 
123 [108, 

140] < 0.05 119 [106, 
135] 

122 [108, 
140] < 0.05 

Invasive 
Diastolic BP 61 [53, 70] 58 [50, 66] < 0.05 59 [51, 68] 59 [51, 68] < 0.05 58 [51, 67] 60 [53, 68] < 0.05 

Invasive 
Mean BP 80 [72, 91] 78 [69, 87] < 0.05 79 [70, 90] 79 [70, 90] < 0.001 78 [69, 88] 80 [72, 89] < 0.05 

Systolic 
blood 
pressure 

121 [105, 
139] 

118 [103, 
135] < 0.05 120 [106, 

135] 
119 [105, 

136] < 0.001 117 [104, 
133] 

123 [106, 
141] < 0.05 

Diastolic 
blood 
pressure 

66 [57, 76] 63 [55, 73] < 0.05 64 [55, 74] 63 [55, 73] < 0.05 62 [54, 72] 65 [56, 75] < 0.05 

Mean 
Arterial 
Pressure 
(MAP) 

82 [72, 94] 79 [69, 91] < 0.05 78 [69, 89] 80 [70, 91] < 0.05 76 [68, 87] 82 [72, 94] < 0.05 

 

3.1 Vital signs as a source of bias 

Initially, we investigated the presence of racial bias in the overall patient cohort and use this as a 
baseline measure. Our analysis of 1,688 patient admissions reveals that the XGBoost algorithm can 
predict patients’ self-reported race using only vital signs, with a performance of AUC 0.74 (± 0.022) as 
shown in Figure 1 and further detailed in Appendix 1. 
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Figure 1 Performance of machine learning models in predicting patients’ self-reported race using vital signs only as input for 
Black and White patients. Analysis is based on Logistic Regression, XGBoost with default parameters and XGBoost with 
optimised parameters found using random search. 

 

Furthermore, similar performance in predicting patients’ race also holds when considering patients 
with comorbidities, such as sepsis, essential hypertension, acute kidney failure, and chronic kidney 
disease, except in patients with heart failure, as shown in Table 2. 

Table 2 Prediction of race from six vital signs in patients with comorbidities for Logistic Regression (LR), XGBoost, and 
XGBoost with optimised (opt) hyperparameters. Results are shown using Area Under the receiver operating characteristic 
Curve (AUC) along with standard deviation (SD). 

 Sepsis 
Essential 
hypertension Heart failure Acute kidney failure 

Chronic kidney 
disease 

LR 0.57 ± 0.176 0.62 ± 0.073 0.53 ± 0.113 0.60 ± 0.049 0.57 ± 0.099 

XGBoost 0.69 ± 0.093 0.60 ± 0.064 0.51 ± 0.050 0.71 ± 0.068 0.72 ± 0.079 

XGBoost (opt) 0.71 ± 0.077 0.60 ± 0.091 0.50 ± 0.063 0.69 ± 0.81 0.67 ± 0.064 

 

Considering these results, we then probed possible origins of racial information in vital signs through 
variable saliency analysis. We used SHAP method to understand the influence of each of the vital signs 
in predicting patients’ self-reported race. The SHAP analysis, shown in Figure 2 revealed that oxygen 
saturation measured through pulse oximetry, was the most influential variable in predicting patients’ 
race. Therefore, our analysis focused on further investigating not only pulse oximetry but also 
technological approaches used to measure vital signs in general as potential sources of racial 
information. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2023. ; https://doi.org/10.1101/2023.12.11.23299819doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.11.23299819
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
Figure 2 Importance of variables in predicting patients’ race using all the six vital signs in Black and White patients. Variables 
are shown in order of importance from the top with pulse oximetry being the most influential in predicting patients’ race. The 
variable name suffix indicates whether mean (_mean), minimum (_min), maximum (_max) or variance (_var) value was used 
for a particular vital sign variable. The frequencies of measurement were considered in the entire 24 hours (_total), during 
each of the first six hours, after admission (hour_[1-6]). The maximum measurements taken during a period of 1 hour are 
labelled as maximum_in_24_hours. 

3.2 Technologies used to measure vital signs as a potential source of racial 
information 

We investigated whether the devices used to measure vital signs can be a source of self-reported racial 
information since earlier work has shown that differences in skin colour can influence pulse oximetry 
readings14. Furthermore, acquiring accurate readings of blood pressure using an arm cuff is challenging 
in patients with high BMI15. Therefore, we investigated whether ML algorithms could pick up these 
known differences. We divided the results below into investigating i) potential racial information in 
blood pressure measurements using an arm cuff and ii) potential racial information in oxygen 
saturation measurements using pulse oximetry. 

3.2.1 Racial information in blood pressure values measured using an arm cuff 

We compared performance of self-reported race prediction using blood pressure values measured 
through an arm cuff (non-invasive) with that of using an arterial line (invasive), in addition to using 
both types of measurements.  
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In contrast to the existing literature, our results show that while there is a presence of racial 
information in blood pressure measurements irrespective of the measurement method used (AUC of 
0.63 ± 0.035), we did not find major differences between values of blood pressure using an arm cuff 
(AUC of 0.64 ± 0.036) in comparison to the values measured through an arterial line (AUC of 0.63 ± 
0.025). These results are summarised in Table 3. 

Table 3 Race prediction performance results for different potential sources of bias using Logistic Regression (LR), XGBoost, 
and XGBoost with optimised (opt) hyperparameters. Results are shown using Area Under the receiver operating 
characteristic Curve (AUC) along with standard deviation (SD). 

 
Non-invasive 

blood 
pressure 

Invasive 
blood 

pressure 

Non-invasive 
and invasive 

blood 
pressure 

Non-invasive 
oxygen 

saturation 

Invasive 
oxygen 

saturation 

Non-invasive 
and invasive 

oxygen 
saturation 

Frequency of 
measuremen

ts of vital 
signs  

Other 
sources of 

bias 

LR 0.61 ± 0.032 0.58 ± 0.027 0.59 ± 0.024 0.73 ± 0.033 0.59 ± 0.032 0.72 ± 0.032 0.55 ± 0.043 0.62 ± 0.044 

XGBoost 0.59 ± 0.030 0.57 ± 0.016 0.59 ± 0.027 0.67 ± 0.027 0.58 ± 0.021 0.68 ± 0.027 0.55 ± 0.030 0.59 ± 0.029 

XGBoost (opt) 0.64 ± 0.036 0.63 ± 0.025 0.63 ± 0.035 0.72 ± 0.028 0.60 ± 0.023 0.72 ± 0.030 0.57 ± 0.019 0.64 ± 0.034 

 

3.2.2 Racial information in oxygen saturation values measured using pulse oximetry 

We also investigated the presence of racial information in oxygen saturation values stemming from 
measurement technologies by comparing performance of race prediction using oxygen saturation 
values obtained from pulse oximetry (non-invasive) with those obtained from an arterial line 
(invasive). 

Our findings show that pulse oximetry is a significant source of racial information with an AUC of 0.72 
(± 0.028). This is in contrast with the results from invasively measured oxygen saturation (arterial line), 
where these values predict patients’ self-reported race with AUC of 0.60 (± 0.023), as shown in Table 
3. Our results support the previous findings that pulse oximetry is affected by the colour of the skin 16. 

3.3 Racial information in care delivery practices reflected in vital signs 

Additionally, we focused on care delivery practices as reflected in the frequency of measurements of 
vital signs. Therefore, we used the frequency of measurement of vital signs, rather than the actual 
values. We find that care delivery practices do not significantly influence prediction of patients’ race 
with an AUC of 0.57 (± 0.019), as shown in Table 3. This may also be because vital signs are measured 
far more routinely than other variables, and consequently if bias indeed exists it would be difficult for 
the algorithms to ascertain. 

3.4 Other sources of racial information reflected in patients’ vital signs 

Finally, we investigated whether self-reported racial information can be learned even when controlling 
for measurement technologies and care delivery practices. For this analysis we used the values of 
invasively measured vital signs only. This is because invasively measured vital signs are less prone to 
be influenced by measurement technology. Even when controlling for these factors, we showed that 
self-reported race can be learned from vital signs with an AUC of 0.64 (± 0.034), as shown in Table 3.  

Without further investigation, it is difficult to pin-point potential sources of self-reported race. One 
hypothesis could be calibration differences in APACHE IV scores as shown in 17, or differences in 
disease severity not being reflected in the APACHE IV scores 9. However, upstream factors, such as 
patient selection criteria for an arterial line or even availability of patients might have also contributed 
to self-reported race being embedded in vital signs 18. 
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4 Discussion 
We have shown that machine learning algorithms can learn self-reported racial information from vital 
signs alone. This is unexpected as racial information was not thought to be present within values of 
vital signs. Furthermore, the ability of machine learning algorithms to learn racial information from 
vital signs generalised to diverse patient populations and held even when controlling for known 
sources of racial bias, such as pulse oximetry readings affected by skin colour, care delivery practices, 
which were not found to contribute to racial information, and presence of co-morbidities. 

Learning self-reported racial information creates a significant concern for development of algorithms 
that support clinical decision-making. If sensitive attributes such as race are learned while training 
algorithms to predict or optimise an outcome, it is possible that the algorithms will use these features 
to inform decision-making. Even more concerning is when these sensitive attributes are learned from 
essential clinical information, heavily relied upon to inform not only course of treatment, but also 
operational workflows and policy making.  

There is overwhelming evidence that race factors into clinical decision-making19. Hispanic patients 
seen by non-Hispanic providers received breast and colorectal cancer screening at higher rates than 
Hispanic patients seen by Hispanic providers20. Greenwood and colleagues reported a 58% reduction 
in mortality of Black newborns when they are under the care of Black physicians compared to when 
they are under the care of White physicians21. Despite reporting greater pain and pain-related 
disability, minority patients are more likely to receive inadequate pain treatment compared with white 
patients22–24. When a sensitive attribute such as race is learned even when deliberately removed from 
a dataset, then it is not far-fetched to think that algorithms will also pick up provider bias and 
subjectivity in decision-making. After all, algorithms are trained on data that document clinical 
intuition and judgement, encoded as decisions that contribute to outcome disparities across race, sex, 
and other demographic factors. 

While definite prediction of self-reported race cannot be obtained, the success of the model in 
correctly classifying two out of three patients is not accidental. Our machine learning models are using 
only the information from patients’ vital signs, suggesting that statistical features from routinely 
collected information in the first 24 hours of admission contain embedded information along racial 
dimensions. Pulse oximeter readings, considered an important unbiased measure of hypoxemia, were 
shown to be influenced by skin colour, which came to light during the COVID crisis 25–28. Upon further 
investigation, it was revealed that oxygen saturation levels had greater variability in patients who 
identified as Black, followed by Hispanic, Asian American, and least in White patients. While our 
saliency analysis showed pulse oximetry as an important variable, its correlation with self-reported 
race does not fully explain our findings. 

In addition to the potential risks, our study also highlights challenges in mitigation measures. A 
common approach, although criticised29, is to selectively remove variables that encode sensitive 
attributes, such as that AI models do not learn from them and consequently do not become part of 
the decision process. Ubiquitous use of vital signs in clinical decision-making renders this approach 
impossible, not least because the origin of racial information appears to be difficult to isolate. Perhaps 
the time has come to apply a counter approach, by using sensitive attributes such as race to facilitate 
audit for possible algorithmic bias and adapt established policies on how to ethically collect, use, and 
report data on race and ethnicity 30. 

4.1 Limitations 

While our study includes a large and diverse patient population (335 ICUs in 208 US hospitals), allowing 
investigation of bias for several racial groups based on an open and well-studied dataset (eICU-CRD), 
some limitations are present. Use of self-reported race presents a challenge, as studies have shown 
that genetic variability is higher within the races than between the races 31, rendering race a more 
social construct rather than a biological one. Following on, self-reported race in this study included 
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rigid categories that did not account for patients of mixed ancestry as well as limited availability of 
data from other racial identity categories. We included Black, Hispanic, and White patients only. Other 
racial identities (namely Asian American and Native American patients) had insufficient data to 
properly analyse. Furthermore, there is a discussion in recent years of whether studies are revealing 
race or results of racism. While this study focuses on the categories of race, the potential explanations 
given for the findings around race are focused on the impact of racism in society and consequently 
medicine. Finally, our study focused on US-based patient population, therefore further investigation 
would be required to determine whether these results are generalisable to centres outside of US-
based ICUs. 

5 Conclusion 
As machine learning weaves itself into the fabric of healthcare, there is an increasing attention on the 
effect of algorithms on underrepresented, marginalised, or disadvantaged populations. For example, 
algorithms used to identify patients with complex health needs were found to perpetuate racial 
disparities 32, leading to a call for greater algorithmic transparency by the US Senate. Our work, while 
in the same vein, goes beyond this call by additionally drawing attention to unexpected sources of bias 
and the potential harm given their ubiquitous use in clinical decision-making. 
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Appendix 1 - Baseline prediction of self-reported race 
Table 2 Baseline race prediction performance in the general cohort for Logistic Regression (LR), XGBoost, and XGBoost with 
optimised (opt) hyperparameters. Results are shown using Area Under the receiver operating characteristic Curve (AUC) 
along with standard deviation (SD). 

 Black and White 
patients 

Hispanic and White 
patients 

Hispanic and Black 
patients 

LR 0.61 ± 0.029 0.61 ± 0.048 0.70 ± 0.056 

XGBoost 0.73 ± 0.034 0.66 ± 0.079 0.78 ± 0.083 

XGBoost (opt) 0.74 ± 0.022 0.63 ± 0.098 0.75 ± 0.092 

Appendix 2 – cohort selection diagram 
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