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ABSTRACT

Introduction: Delirium occurrence is common and preventive strategies are resource intensive. Screening tools

can prioritize patients at risk. Using machine learning, we can capture time and treatment effects that pose a

challenge to delirium prediction. We aim to develop a delirium prediction model that can be used as a screening

tool.

Methods: From the eICU Collaborative Research Database (eICU-CRD) and the Medical Information Mart for In-

tensive Care version III (MIMIC-III) database, patients with one or more Confusion Assessment Method-

Intensive Care Unit (CAM-ICU) values and intensive care unit (ICU) length of stay greater than 24 h were in-

cluded in our study. We validated our model using 21 quantitative clinical parameters and assessed perfor-

mance across a range of observation and prediction windows, using different thresholds and applied interpreta-

tion techniques. We evaluate our models based on stratified repeated cross-validation using 3 algorithms,

namely Logistic Regression, Random Forest, and Bidirectional Long Short-Term Memory (BiLSTM). BiLSTM

represents an evolution from recurrent neural network-based Long Short-Term Memory, and with a backward

input, preserves information from both past and future. Model performance is measured using Area Under Re-

ceiver Operating Characteristic, Area Under Precision Recall Curve, Recall, Precision (Positive Predictive Value),

and Negative Predictive Value metrics.

Results: We evaluated our results on 16 546 patients (47% female) and 6294 patients (44% female) from eICU-

CRD and MIMIC-III databases, respectively. Performance was best in BiLSTM models where, precision and re-

call changed from 37.52% (95% confidence interval [CI], 36.00%–39.05%) to 17.45 (95% CI, 15.83%–19.08%) and

86.1% (95% CI, 82.49%–89.71%) to 75.58% (95% CI, 68.33%–82.83%), respectively as prediction window in-

creased from 12 to 96 h. After optimizing for higher recall, precision and recall changed from 26.96% (95% CI,

24.99%–28.94%) to 11.34% (95% CI, 10.71%–11.98%) and 93.73% (95% CI, 93.1%–94.37%) to 92.57% (95% CI,

88.19%–96.95%), respectively. Comparable results were obtained in the MIMIC-III cohort.
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Conclusions: Our model performed comparably to contemporary models using fewer variables. Using techni-

ques like sliding windows, modification of threshold to augment recall and feature ranking for interpretability,

we addressed shortcomings of current models.
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LAY SUMMARY

Occurrence of delirium often complicates a patient’s ICU stay and carries a significant risk for poor outcomes. Diagnosis of

delirium is time-consuming, requires specialized training and hence not performed more than a few times a day. Once diag-

nosed, treatment is tedious requiring involvement of several teams. Early detection of patients at risk for delirium can help

prevent occurrence of delirium. Several prediction models exist but they are not tailored to the ICU population or lack the

qualities that make it an accurate tool.

We have used 16 546 and 6294 patients respectively from 2 large datasets—eICU-CRD and MIMIC III to train and validate

our delirium algorithm. We altered thresholds that increase its sensitivity to predict delirium and tested out across a variety

of time spans 12–96 h (windows) to determine optimal prediction time. With modified thresholds, we have established a sen-

sitivity of above 90% in all windows. This was however, done in expense of specificity. We also explored feature ranking

which is rare for deep learning models and determined known factors to be top contributors to prediction.

We conclude, deep learning-based delirium prediction is feasible and useful to rule out patients at low risk for delirium.

INTRODUCTION

The diagnosis of delirium is common in critically ill patients and

depending on the patient population its incidence can be up to

80%.1 Typically delirium rates have ranged between 10% and 23%,

and half of them acquire delirium in the intensive care unit (ICU).2

Delirium leads to increased hospital length of stay and need for pro-

longed institutionalization for critically ill patients.3–5 Delirium

drives up healthcare costs, and its impact often persists beyond the

ICU including risk for functional decline in daily living activities,

and long-term cognitive impairment.6–10

Treatment and prevention of delirium is dependent on identify-

ing the complex interplay of multiple triggers in the ICU.11 A multi-

modal strategy of evidence-based best-practice recommendations

aimed at coordinating multidisciplinary care to reduce delirium risk

and expedite ICU discharge commonly referred to as the ABCDEF

bundle is effective in both preventing and treating delirium.12,13

This bundle outlines in detail how we assess, prevent and manage

pain, perform both spontaneous awakening and breathing trials

daily in intubated and mechanically ventilated patients, choose anal-

gesic and sedative agents, assess, prevent and manage delirium, in-

corporate early mobility, and engage family members in the care of

these critically ill patients. Unfortunately, this bundle of interven-

tions requires education of caregivers, coordination between a mul-

tidisciplinary team, is labor and resource intensive, and therefore

not consistently implemented across all ICU patients and all health

care settings12,14 A screening tool to prioritize ABCDEF implemen-

tation to those who are most vulnerable can be an invaluable tool to

maximize the benefit of the resource-intensive preventive measures.

Current assessment tools, such as the Confusion Assessment

Method for the Intensive Care Unit (CAM-ICU), only diagnoses de-

lirium after its onset.15 Administering CAM-ICU requires special-

ized training. Although each hospital has its own protocol for

delirium, because of its time-consuming nature CAM-ICU is infre-

quently done compared to other vital signs and diagnosis can be

delayed. Although certain patient characteristics, such as age, illness

severity, and certain medications, are considered high risk for devel-

opment of delirium or while elevations in inflammatory biomarkers

possibly associated with severe disease, these risk factors have been

inconsistent in their ability to predict the onset of delirium.16–18

Previous prediction models trained on small patient cohorts

lacked adequate power to capture the complex relationships be-

tween delirium and the time-varying predictor variables.19,20 In

attempting to improve the performance, larger administrative data-

sets were used to develop prediction models, using several hundred

variables. However, these models lack interpretability, and are al-

most impossible to adopt in day-to-day practice.21 Additionally,

most of these models are not specific to the critically ill population

and cannot be extrapolated to the ICU.20

We propose to build a screening tool for delirium by developing

and fine tuning a delirium prediction model that requires fewer varia-

bles than existing models, using large development and validation

cohorts in comparison to the existing literature18 and that can predict

the risk of delirium in a continuous fashion using a sliding window.

Using both conventional machine learning methods and deep learning

algorithms, we will evaluate performance of our model across various

observation and prediction windows to address the issues of variabil-

ity across time and treatment effects. In addition, we will rank the in-

dependent variables in order of their predictive importance to help

with interpretability. These attributes should help pave the way for

implementation of a screening tool to help caregivers at the bedside.

METHODS

Ethical review
The analysis using the eICU Collaborative Research Database (eICU-

CRD) is exempt from institutional review board approval due to the ret-

rospective design, lack of direct patient intervention, and the security

schema, for which the re-identification risk was certified as meeting safe

harbor standards by an independent privacy expert (Privacert, Cam-

bridge, MA, USA) (Health Insurance Portability and Accountability Act

Certification no. 1031219-2). The data in the Medical Information Mart

for Intensive Care version III (MIMIC-III) are de-identified, and the insti-

tutional review boards of the Massachusetts Institute of Technology

(No. 0403000206) and Beth Israel Deaconess Medical Center (2001-P-

001699/14) both approved the use of the database for research.
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Study population
The eICU-CRD is a freely available multicenter database comprising

200 859 patient unit encounters for 139 367 unique patients admit-

ted between 2014 and 2015 in over 200 hospitals located through-

out the United States.22 The MIMIC-III database is an open-access

single-center ICU database including 53 423 distinct hospital admis-

sions for 46 476 unique patients admitted from 2001 to 2012.23

Both datasets comprise data on patient demographics, vitals, clinical

flowsheets, laboratory values, medications, interventions, and out-

comes. We included all adult patients up to age of 89, with an ICU

length of stay of at least 24 h and having had at least one CAM-ICU

assessment, as shown in the cohort selection diagram (Supplemen-

tary eFigure 1). Patients have been admitted for multiple reasons to

these ICUs. Their admission diagnoses have not been a factor in the

selection of our patients.

Delirium assessment
Observation window refers to the period where patient data are col-

lected, and the model is derived. Prediction window refers to the pe-

riod from when the observation window ends up to the onset of the

outcome, CAM-ICU positive in our case. We observed patients from

0 to 12 h, 0 to 24 h and 0 to 48 h. We predicted the incidence of De-

lirium for the next 12, 24, 48, 72, and 96 h. The diagnosis of delir-

ium was made when at least one CAM-ICU value was positive.15 In

instances with multiple CAM-ICU assessments, onset of delirium

was determined from the time of the first positive CAM-ICU.

Variable selection
The rationale for selection of independent variables was based on

their ability to predict delirium in prior literature, availability in our

databases, ease of extracting and monitoring in a real-time environ-

ment. We identified 21 categorical or numerical variables classified

into demographic data, vital signs, laboratory values, and vasopres-

sor dose that fulfilled above criteria.24–35 We also calculated daily

sequential organ failure assessment (SOFA) scores to provide overall

patient status. Since admission diagnoses or past medical history

were not consistently available in the applied datasets, we excluded

them. Downstream variables such as outcomes would not be avail-

able in real-time and similarly excluded. Initiation of delirium thera-

pies like antipsychotic drugs could be a reaction to onset of

delirium, and hence excluded to avoid confounding. Table 1 lists all

the variables used.

Data preprocessing
All variables were aggregated into hourly intervals, where the last

known value was used as a candidate for that interval. In cases

where the last value for each variable is not measured in the interval,

the representative of that interval was computed by averaging the

available measurements in the interval. Missing values that were col-

lected hourly like vital signs were imputed by forward and then if

needed backward imputation. Categorical variables were converted

into a vector to capture the semantics of each category at the model

derivation phase. Specifically, we reshaped the data that was fed in

3 dimensions for BILSTM to 2-dimension input for Logistic Regres-

sion (LR) and Random Forest (RF) to have the same input for each

model and to provide a fair comparison for each model. For all con-

tinuous variables, we utilized the recorded value in the database

without any adaptation. Heat map further details the set of varia-

bles, including linear correlations between each variable (Supple-

mentary eFigure 2).

Model derivation and validation
We evaluated the results based on 5-fold stratified cross-validation.

This method partitions the data into 5 equal segments. Respectively

training and validation phases are done in 5 iterations in a manner

that within each iteration a different segment of the data is held out

for validation, while the remaining 4 segments are considered as a

derivation set to train the model. Typically, metrics calculated based

on the k-fold stratified cross-validation can effectively assess overfit-

ting and has lower variance.36

We used 3 sets of algorithms to evaluate delirium prediction,

namely LR, RF, and Bidirectional Long Short-Term Memory

(BiLSTM). BiLSTM represents an evolution from recurrent neural

network-based Long Short-Term Memory (LSTM), and with a

backward input, preserves information from both past and future,

producing more accurate predictions.37,38

Considering that both LR and RF are unable to process time se-

ries variables efficiently, we pre-processed the clinical variables and

all-time steps and corresponding variables were flattened into a sin-

gle record. This was done to ensure that both LR and RF have access

to the same data about the changes in patient state as BiLSTM, to

ensure a fair performance comparison.

Statistical analysis
The classification results for delirium prediction are reported using

the Area Under Receiver Operating Characteristic (AUROC), Area

Under Precision Recall Curve (AUPRC), Recall, Precision (Positive

Predictive Value), and Negative Predictive Value. Furthermore, we

also investigated calibration quality of our models.

Model interpretability
Although there are many definitions of interpretability, we focused

on how the model ranks each input variable with respect to outcome

prediction. LR and RF have been successfully employed in the clini-

Table 1. Variables included in the prediction models

Demographic data

Age, gender, height, weight

Vital signs

Oxygen saturation (SpO2), heart rate (HR), temperature

Other measurements

Sofa, sofa without GCS, Ventilation

Laboratory measurements

White blood cell count (WBC), sodium (Na), blood urea nitrogen (BUN), glucose, hemoglobin, platelets, potassium, chloride, bicarbonate, creati-

nine

Medications as continuous drips

Dopamine, epinephrine, norepinephrine, phenylephrine (all calculated as norepinephrine equivalent)
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cal domain due to their ease of interpretation; however, they require

additional processing to handle high-dimensional, longitudinal, and

irregular electronic health record datasets.39 In this context, we

employed the Shapley Value Sampling (SVS) method to probe the

Bi-LSTM model.40 SVS is a perturbation-based method to compute

variable attribution, which is based on sampling theory that can be

used to estimate Shapley values.41 The SVS produces feature ranking

with respect to each feature input, allowing us to rank these varia-

bles based on their predictive power. Given that interpretability of

neural networks is still an open research question, especially for tem-

poral neural networks, we also provide results from 2 other meth-

ods, namely Integrated Gradient and Guided Backpropagation, to

ensure that the variable importance results are consistent across the

3 methods.42–44

Source code
The entire code is available at https://github.com/mostafaalishahi/

Delirium_prediction_models.

RESULTS

Patient characteristics
The eICU-CRD cohort consisted of 16 546 patients, with a mean

age of 62.84 (616.02) years and 46.53% were female. The inci-

dence of delirium was 19.06% (Table 2). In the first 48 h of admis-

sion, 59.30% of patients presented with delirium. The MIMIC-III

cohort consisted of 6294 patients, with a mean age of 63.58

(615.79) years and 43.82% were female. The incidence of delirium

was 20.15% and 66.34% of patients presented within the first 48 h

of ICU admission (Table 2, Supplementary eFigure 3). For vital signs

and laboratory values that were generated hourly, an average of

7% were missing values (Supplementary eTable 1). Patients with

CAM-ICUþ status had a lower SOFA score, higher blood urea ni-

trogen, and white blood cell count.

Performance of machine learning models
The BiLSTM algorithm was noted to have had the highest AUROC

and AUPRC values for most of the observation-prediction combina-

tions. The best performance on the eICU-CRD cohort was achieved

with a 24 h observation and a 12-h prediction window, where

AUROC of BiLSTM model was 88.39% (95% confidence interval

[CI], 86.41–89.96) as shown in Supplementary eTable 2. Increasing

the prediction window to 48 h (while keeping the observation win-

dow to 24 h), the AUROC of BiLSTM model was 84.87% (95% CI,

83.32%–86.41%), LR 82.57% (95% CI, 79.64%–85.47%), and

RF 83.24% (95% CI, 81.83%–84.67%), and AUPRC of 34.97%

(95% CI, 32.22%–37.27%), 31.07% (95% CI, 27.62%–33.81%),

and 32.82% (95% CI, 28.89%–36.75%), respectively (Figure 1).

Since BiLSTM had the best AUROCs and AUPRCs, we calcu-

lated the precision and recall values in each observation-prediction

window using BiLSTM. In the eICU-CRD derivation cohort, for the

12-h observation window, the precision and recall decreased from

37.52% (95% CI, 36.00%–39.05%) to 28.68% (95% CI, 24.88%–

32.49%) and from 86.1% (95% CI, 82.49%–89.71%) to 63.49%

(95% CI, 52.91%–74.08%) respectively when the prediction win-

dow changed from 12 to 96 h (Figure 2 and Supplementary eTable

2). When increasing the observation window for 48-h prediction,

the precision and recall changed from 32.82% (95% CI, 29.6%–36

.04%) to 17.9% (95% CI, 15.37%–20.44%) and from 82.22%

(95% CI, 78.16%–86.27%) to 73.95% (95% CI, 64.8%–83.11%).

Table 2. Characteristics of the included patients divided by their CAM-ICU status

Variable

eICU MIMIC

CAM-ICU þ CAM-ICU � P value CAM-ICU þ CAM-ICU � P value

Number of patients (%) 3153 (19) 13393 (81) — 1268 (20) 5026 (80) —

Age, mean (SD), years 65.53 (15.14) 62.20 (16.16) <.05 64.81 (15.62) 63.27 (15.82) <.05

Female (%) 1405 (44) 6295 (47) — 545 (43) 2211 (44) —

Height, mean (SD), m 168.47 (18.23) 169.25 (15.90) <.05 170.06 (14.22) 168.88 (14.87) .054

Weight, mean (SD), kg 83.06 (29.88) 85.00 (25.58) <.05 82.68 (30.25) 81.53 (24.89) 0.15

Heart rate, mean (SD), bpm 88.22 (18.06) 85.09 (17.73) <.05 88.60 (17.53) 85.12 (17.29) <.05

Oxygen saturation, mean (SD), % 97.16 (2.72) 96.80 (2.79) <.05 97.17 (2.71) 96.58 (4.50) <.05

Glucose, mean (SD), mg/dL 140.32 (45.97) 146.46 (56.31) <.05 144.51 (58.70) 141.25 (51.43) <.05

Temperature, mean (SD), �C 37.01 (0.69) 36.97 (2.65) <.05 37.06 (0.76) 36.88 (0.76) <.05

Serum sodium, mean (SD), mEq/L 140.32 (5.80) 138.57 (5.04) <.05 139.39 (5.48) 138.32 (4.89) <.05

BUN, mean (SD), mg/dL 31.93 (22.10) 25.88 (18.64) <.05 33.96 (24.46) 28.10 (20.77) <.05

WBC, mean (SD), per microliter 13.01 (6.47) 11.08 (5.51) <.05 12.13 (7.73) 10.74 (6.29) <.05

Hemoglobin, mean (SD), g/dL 9.73 (1.89) 10.00 (2.08) <.05 9.76 (1.68) 10.27 (1.76) <.05

Platelets, mean (SD), per microliter 201.34 (122.76) 210.23 (108.70) <.05 202.59 (137.23) 199.53 (114.33) <.05

Serum potassium, mean (SD), mEq/L 3.98 (0.59) 4.00 (0.57) .1431 4.03 (0.57) 4.07 (0.56) <.05

Chloride, mean (SD), mEq/L 105.54 (6.86) 103.24 (6.29) <.05 104.57 (6.69) 104.36 (6.37) <.05

Serum bicarbonate, mean (SD), mEq/L 35.23 (5.02) 25.52 (5.02) <.05 25.16 (5.21) 24.88 (4.95) <.05

Serum creatinine, mean (SD), mg/dL 1.45 (1.16) 1.37 (1.21) <.05 1.63 (1.28) 1.37 (1.05) <.05

Ventilation, mean (SD) 0.87 (0.34) 0.71 (0.45) <.05 0.56 (0.50) 0.33 (0.47) <.05

Total norepinephrine dose (SD), mcg/kg/min 0.02 (0.31) 0.01 (0.28) <.05 0.08 (0.63) 0.06 (0.57) <.05

SOFA, mean (SD) 4.9 (3.3) 3.42 (2.84) <.05 6.46 (3.77) 6.67 (3.34) <.05

SOFA without GCS, mean (SD) 3.27 (2.83) 2.58 (2.33) <.05 5.42 (3.65) 4.99 (3.13) <.05

CAM-ICU: confusion assessment method in the ICU; þ: present; �: absent; SD: standard deviation; m: meter; kg: kilogram; bpm: beats/minute; mg/dL: milli-

grams/deciliter; �C: degree Celsius; mEq/L: milli equivalents per liter; g/dL: gram per deciliter; mcg/kg/min: micrograms per kilogram per minute; SOFA: sequen-

tial organ failure assessment; BUN: Blood urea nitrogen; WBC: white blood cell count; GCS: Glasgow coma scale.
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As we were interested in making our model more sensitive

for screening, we changed thresholds to have higher recall at the

expense of precision, as such we assigned higher weights to the

minority class (delirium positive).45 For a 12-h observation window,

while recall changed slightly from 93.73% (95% CI, 93.1%–

94.37%) to 92.57% (95% CI, 88.19%–96.95%) as the prediction

window changed from 12 to 96 h, the precision decreased from

26.96% (95% CI, 24.99%–28.94%) to 11.34% (95% CI, 10.71%–

11.98%) (Supplementary eTable 2). For the 48-h prediction window

as we increased the observation window from 12 to 48 h, the preci-

sion and recall changed from 16.82% (95% CI, 15.61%–18.02%)

to 15.64% (95% CI, 13.96%–17.42%) and 92.15% (95% CI,

88.47%–95.82) to 91.13% (95% CI, 89.57%–92.69%), respec-

tively. Comparable results for the MIMIC-III cohort with varying

thresholds are presented in Supplementary eTable 3, Figures 3 and

4. A heat map demonstrating correlation among features is pre-

sented in Supplementary eFigure 2 for the eICU-CRD for the

MIMIC-III populations.

Interpretability
Figure 5 ranks the features that have contributed to delirium prediction

according to their relative importance in the eICU-CRD derived model.

Ventilation, heart rate, age, white blood cell count, SOFA score, and va-

sopressor use are the highest ranked features across different prediction

windows. Most of these features are also the highest ranked features

when assessing interpretability in the MIMIC III cohort (Figure 6).

DISCUSSION

Our study shows that a machine learning model using only a few rou-

tine clinical variables replicated the performance of previously reported

Figure 1. Model derived and validated using cross-validation. (A) Unmodified thresholds and (B) thresholds optimized for higher recall. AUROC: area under re-

ceiver operating curve; h: hour; obs: observation window; pred: prediction window; TPR: true positivity rate; FPR: false positivity rate; LR: logistic regression; RF:

random forest; c: long short-term memory.
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models that were developed using hundreds of variables. Our study

successfully demonstrated that we could modify the performance of a

model to fit our clinical needs as an effective screening tool. We took

the following steps that helped us achieve our goal: (1) we studied the

peak delirium onset time in our population and optimized the model to

maximize predictive accuracy in that time frame; (2) we incorporated

sliding windows in our model for continuous prediction across time

and address drop in performance associated with predictions further

ahead; and (3) we adjusted our thresholds to favor a high recall to en-

sure the model detects all patients at risk of delirium. Furthermore, we

demonstrated that performance across different datasets diminish in ac-

curacy and needs to be individualized to the population. Our features

when ranked suggest older and more critically ill patients are at greater

risk of delirium, especially in combination with mechanical ventilation

and vasopressor therapy. Our model’s ranking of features is consistent

with what we already know as high-risk features. We have shared our

code for replicating the results and recommend adjustments be made

according to the specific setting and their needs.46

Screening tools like CAM-ICU describe a snapshot in time and do

not give an idea of the patient’s progress nor are predictive. Strategies

based on established best practices such as ABCDEF are resource in-

tensive and challenging to implement universally.12 Despite effective

prevention strategies, delirium is still commonplace in the ICU

highlighting a need for a screening tool that prioritizes patients at risk

and allows us to exclude patients who are low risk from these time-

consuming therapies. Few models exist that can both accurately pre-

dict and be easy to implement. Most models use several hundred varia-

bles or use only a snapshot of features that can vary with time. Also,

many of these models were trained on small datasets and use inconsis-

tent approaches for collecting and/or stratifying data into training and

validation cohorts limiting generalizability.19–21 The Pre-Deliric and e-

Pre-Deliric, were built with a handful of predictor variables from a

Figure 2. Model derived and validated using cross-validation. (A) Unmodified thresholds and (B) thresholds optimized for higher recall. AUPRC: area under preci-

sion recall curve; h: hour; obs: observation window; pred: prediction window; LR: logistic regression; RF: random forest; LSTM: long short-term memory.
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large patient cohort, and been externally validated.47,48 However, they

employ data from admission variables that change and lose predictive

power with time. Recent machine learning-based algorithms were able

to predict delirium accurately but using over 700 predictor variables

and were also criticized for their analysis methods.21,49 Importantly,

these models have not investigated how their performance changes

with different prediction windows, optimal time of observation, cap-

ture the evolution of a patient’s state through time and unable to ad-

just delirium risk estimation temporally. In our knowledge, our report

is one of the first instances of delirium prediction, where we have not

only tried to predict accurately across different scenarios but also

addressed the issues with prior prediction models. Notably, we have it-

eratively developed our model to address the challenges that are posed

by low incidence of delirium, temporal progression of disease, and dif-

ferent patient populations. Additionally, we have ventured into the

realm of explaining how our features contribute, something that is

rare in models using deep learning.

The BiLSTM-based model, which has the advantage of capturing

temporal dependencies, performed the best of the 3 models evalu-

ated, suggesting that the trajectory of predictive features is more in-

formative than a single value. The simpler LR model is an attractive

option if implementation is determined by computational limitations

of a deep learning model. A longer observation window gained little

in terms of model performance. A 48-h observation window even

led to a drop in accuracy, but this is due to a decrease in the size of

the training cohort. Another possibility is that factors contributing

to delirium are proximal to its onset, further justifying the use of

continuous prediction using a sliding window. The decay in perfor-

mance of the algorithm as it predicts delirium with longer lead time

is similar in both MIMIC-III and eICU-CRD.

Figure 3. Model derived and validated using cross-validation. (A) Unmodified thresholds and (B) thresholds optimized for higher recall. AUROC: area under re-

ceiver operating curve; h: hour; obs: observation window; pred: prediction window; TPR: true positivity rate; FPR: false positivity rate; LR: logistic regression; RF:

random forest; LSTM: long short-term memory.
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A screening tool needs to be sensitive. This is best addressed

by a model with a high recall. We adjusted thresholds favoring a

high recall while sacrificing precision (Supplementary eTables 2

and 3) to achieve this purpose. Also, it is desirable to have predic-

tion algorithms that have short observation duration and predict

the furthest ahead. In our case, since most (59% in eICU-CRD,

66% in MIMIC-III) delirium cases occurred within 48 h of ICU

admission (Supplementary eFigure 3), hence we targeted perfor-

mance for a 48-h prediction window with a 12- or 24-h observa-

tion window. We also demonstrated that as the prediction

window moved beyond 48 h the model-maintained recall, but

with a precipitous drop in precision. Non-trivial tuning of hyper-

parameters is required when algorithms are ported across popula-

tions. We suggest the performance of different observation and

prediction times be studied on the local patient population and

depending on the objective of the algorithm the optimal windows

are determined. Furthermore, adapting the model to the local pa-

tient population could not only improve the predictive perfor-

mance, but also calibration quality (Supplementary eFigure 4).

Delirium is precipitated through many factors, some that are

unique to the ICU. Our variables were chosen a priori based on liter-

ature review. We only included variables that can be easily extracted

in real time. Instead of using static values, we employed a sliding

window for prediction and incorporated the trajectory of each vari-

able over time. Our results indicate that this strategy predicts delir-

ium more accurately than values captured at a moment in time and

eliminates the need for long-term prediction.

Since we conducted a retrospective study, causality between

the features and delirium cannot be established. Other limitations

include selection bias (we excluded observations with missing

CAM-ICU values) and interpreter bias (the data recorded in the

databases might have been collected after the onset of delirium,

Figure 4. Model derived and validated using cross-validation. (A) Unmodified thresholds and (B) thresholds optimized for higher recall. AUPRC: area under preci-

sion recall curve; h: hour; obs: observation window; pred: prediction window; LR: logistic regression; RF: random forest; LSTM: long short-term memory.
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given the discontinuous nature of CAM-ICU measurement). Addi-

tionally, CAM-ICU was scored by different nurses at separate

times and in different units, potentially resulting in inter-operator

variability. This study also does not have the ability to predict

the duration or outcomes of each patient once delirium has oc-

curred.

CONCLUSION

We successfully designed a delirium prediction model as a potential

screening tool for ABCDEF bundle implementation. Using a few

clinically relevant predictor variables we were able to achieve com-

parable performance to contemporary and well-reported models.

We were able to tackle the challenge presented by evolving temporal

and treatment effects by using methods that captured temporal

trends in data rather than static values and sliding observation win-

dows, threshold adjustments to ensure consistently high recall. Addi-

tionally, we peeked at interpreting the model and shared our code

online for reproducibility. We believe our model will help with iden-

tifying patients at risk of delirium early and will allow us to target

preventive therapies, which is often time-consuming and personnel-

intensive, to the patients who are most likely to benefit.
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