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Abstract
Elevations in initially obtained serum lactate levels are strong predictors of mortality in critically ill patients. Identifying 
patients whose serum lactate levels are more likely to increase can alert physicians to intensify care and guide them in the 
frequency of tending the blood test. We investigate whether machine learning models can predict subsequent serum lactate 
changes. We investigated serum lactate change prediction using the MIMIC-III and eICU-CRD datasets in internal as well 
as external validation of the eICU cohort on the MIMIC-III cohort. Three subgroups were defined based on the initial lactate 
levels: (i) normal group (< 2 mmol/L), (ii) mild group (2–4 mmol/L), and (iii) severe group (> 4 mmol/L). Outcomes were 
defined based on increase or decrease of serum lactate levels between the groups. We also performed sensitivity analysis 
by defining the outcome as lactate change of > 10% and furthermore investigated the influence of the time interval between 
subsequent lactate measurements on predictive performance. The LSTM models were able to predict deterioration of serum 
lactate values of MIMIC-III patients with an AUC of 0.77 (95% CI 0.762–0.771) for the normal group, 0.77 (95% CI 
0.768–0.772) for the mild group, and 0.85 (95% CI 0.840–0.851) for the severe group, with only a slightly lower performance 
in the external validation. The LSTM demonstrated good discrimination of patients who had deterioration in serum lactate 
levels. Clinical studies are needed to evaluate whether utilization of a clinical decision support tool based on these results 
could positively impact decision-making and patient outcomes.
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SOFA	� Sequential organ failure assessment
STROBE	� Strengthening the reporting of observational 

studies in epidemiology

1  Introduction

Hyperlactatemia is a medical condition caused by accumu-
lation of lactate and hydrogen ions in the bloodstream and 
tissues, usually as a result of tissue hypoxia and systemic 
hypoperfusion. It is commonly observed and treated in criti-
cal care conditions such as severe heart failure, sepsis, or 
other forms of shock. Both the magnitude and rate of change 
of serum lactate elevation are strong predictors of mortality 
[1].

When a patient is admitted to an ICU for certain condi-
tions such as shock or trauma, a serum lactate level may be 
obtained in addition to a number of other laboratory tests. 
Certain tests including metabolic and hematologic (i.e. com-
plete blood count) panels are routinely obtained on a daily 
basis during the acute phase of critical illness. However, it 
is rarely appropriate or indicated to test serum lactate in this 
kind of routine, periodic basis. Rather, serum lactate val-
ues are obtained in a targeted fashion based on the clinical 
context, or more explicitly, on the perceived stability of the 
patient. Reliance on the provider to order the test introduces 
variation that can impact the outcome of the patient. In this 
work, we address the issue of whether the clinical determi-
nation of timing for subsequent serum lactate samples can be 
improved by application of artificial intelligence techniques 
to available data.

Blood (serum, or plasma when the lactate is measured in 
an anticoagulated sample with an arterial blood gas) lactate 
reduction during the initial hours of intensive care unit (ICU) 
admission has been shown to be associated with improved 
survival [2–5], while persistently high and increasing levels 
are associated with poor outcomes [6]. Resuscitation guided 
by serum lactate levels has also been shown to be associated 
with reduced hospital mortality [7]. At present, continuous 
lactate monitoring is not yet available [8]. While frequent, 
periodic serum lactate measurements might seem the next 
best choice, these approaches involve downsides, including 
risk of anemia from repeated blood draws [9, 10], need for 
frequent venipunctures, or use of a central venous catheter 
to draw blood that comes with an infection risk [11, 12], 
and cost. Many unnecessary samples are also likely to be 
drawn when periodic studies are ordered. Most importantly, 
in the absence of the availability of continuous serum lactate 
measurements, the optimal approach to periodic or repeated 
determination of serum lactate level simply remains uncer-
tain, and in current practice is likely to rest on the variable 
and individualized experiences of practitioners as well as the 
inevitable exigencies and vicissitudes of clinical workflow 

in a demanding environment. The fundamental clinical 
question is whether the serum lactate levels are likely to be 
increasing, or in the case of already elevated levels, show-
ing no improvement (which is considered negatively from 
a clinical standpoint). A data driven trigger for determining 
the need and timing for repeat serum lactate testing would 
be a significant advance in standardizing and potentially 
improving care processes as well as clinical laboratory uti-
lization in this setting.

Given the strong prognostic utility of serum lactate [1], 
continuously predicting the trajectory of serum lactate val-
ues would be clinically useful as a tool that would optimize 
the number of serum lactate tests by reducing unnecessary 
testing while providing a reminder for necessary, and pre-
sumably useful, subsequent testing. A prediction of increas-
ing serum lactate levels could alert clinicians to potential 
deterioration and prompt confirmatory testing with a blood 
draw. On the other hand, a prediction of stable (in the case of 
previously normal levels) or improving serum lactate levels 
would prevent unnecessary blood draws. Machine learning 
algorithms may be useful in both prompting repeat blood 
draws likely to yield actionable information, and in reducing 
the number of unnecessary repeat testing [13].

We hypothesize that: (1) clinical variables during the 
first 48 h of ICU admission can predict the trajectory of 
serum lactate values during that time, and that (2) patients 
classified into normal, mild and severe groups, based on 
their initial serum lactate measurements, manifest different 
factors affecting this trajectory. In this work, we describe 
an approach to detecting worsening hyperlactatemia in ICU 
patients on the basis of input of expert clinical knowledge, 
state-of-the-art analytical techniques, and large, high-res-
olution, multi-center datasets to construct three models to 
identify patients at risk of worsening hyperlactatemia within 
the first 48 h of ICU admission.

2 � Methods

2.1 � Data sources

The Medical Information Mart for Intensive Care (MIMIC-
III, v1.4) is a longitudinal, single-center database main-
tained by the Laboratory for Computational Physiology 
at the Massachusetts Institute of Technology (MIT) which 
contains data associated with 53,423 distinct ICU admis-
sions for adult patients (aged 16 years and older) admitted 
to critical care units between 2001 and 2012 [14] at the Beth 
Israel Deaconess Medical Center. It is a teaching hospital of 
Harvard Medical School with 673 licensed beds, including 
493 medical/surgical beds, 77 critical care beds, and 62 OB/
GYN beds.
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The eICU Collaborative Research Database (eICU-CRD) 
contains data associated with 200,859 admissions collected 
from 335 ICUs across 208 hospitals in the US admitted 
between 2014 and 2015 [15].

2.2 � Study design

We retrospectively evaluated a subgroup of adult patients 
(age ≥ 18  years) from the MIMIC-III and eICU-CRD 
datasets that had at least 2 serum lactate measurements 
recorded within the first 48 h of ICU admission as well as 
an ICU length of stay greater than or equal to 24 h. The 
selected patients were further divided into three subgroups 
based on their initial serum lactate levels: (i) normal group 
(< 2 mmol/L), (ii) mild group (2 to 4 mmol/L) and (iii) 
severe group (> 4 mmol/L). The present study is reported in 
accordance with the Strengthening the Reporting of Obser-
vational studies in Epidemiology (STROBE) statement.

2.3 � Definition of outcomes

The outcome was the trajectory of the second serum lac-
tate measurement which was categorized into a positive or 
negative outcome based on the initial subgroup to which the 
patient belonged. For the normal group, a negative outcome 
was defined as a serum lactate increase to mild or severe 
levels, while a positive outcome was defined as a value that 
remained within the normal level. A similar approach was 
taken for the other two subgroups, as shown in Table 1, 
where the increase in lactate levels between groups corre-
sponds to a negative outcome.

2.4 � Sensitivity analyses

We conducted a sensitivity analysis to investigate whether 
a 10% change in serum lactate levels (rather than between 
groups) influences predictive performance of the model. 
The 10% change was chosen because serum lactate non-
clearance, defined as a serum lactate decrease of less than 
10%, is associated with an increased risk of mortality [2–6]. 
Details and results of this analysis are presented in Online 
Appendix 1.

We also conducted an additional sensitivity analysis to 
investigate whether the difference in time between the two 
serum lactate measurements has any effect on the prediction 
performance of lactate deterioration. For this analysis, we 
restricted the cohort to only those patients that had the sub-
sequent serum lactate measured within 8 h of the preceding 
lactate measurement. The 8-h interval was chosen based on 
Surviving Sepsis Campaign guidelines [16] that recommend 
serum lactate be measured every 6 h. We allowed for a 2-h 
delay to account for situations where the serum lactate might 
be measured but not immediately recorded in the patient’s 
health record. Details and results of these analyses are pre-
sented in Online Appendix 2.

2.5 � Variable selection

We selected 54 variables identified by ICU clinicians and 
the related literature as relevant to serum lactate deterio-
ration and available in both MIMIC-III and eICU-CRD 
within 48 h of admission. These include selected laboratory 
values, vital signs, patient demographics, and nursing care 
data obtained during the admission assessment as shown in 
Online Appendix 3. Variables also included values obtained 
through an arterial blood gas (ABG) of the previous meas-
urement, which had to be sampled at least two hours (dis-
cretization interval) before the timestamp of the predicted 
serum lactate level. Laboratory variables were discretized 
into two-hour intervals as experiments revealed better model 
performance compared to models developed on hourly time 
windows. Outliers were addressed by defining a clinically 
valid interval. The variables were normalized using zero 
mean and scaling to unit variance. Linear correlation (Pear-
son) between the top 10 highest correlated variables with 
serum lactate is shown in Online Appendix 3.

2.6 � Missing values imputation strategy

We evaluated several imputation strategies using both 
data-driven approaches and in combination with clinical 
heuristics. In our previous work, we evaluated twelve dif-
ferent imputation strategies, including strategies based on 
mean, multiple imputation (chained equations), random 

Table 1   Definition of outcomes for each patient subgroup

Initial lactate value Outcome

Negative Positive

Normal (< 2 mmol/L) Serum lactate increases to mild or severe group levels Serum lactate remains within the normal group
Mild (2–4 mmol/L) Serum lactate increases to severe group or remains within the 

mild group levels
Serum lactate decreases to normal group levels

Severe (> 4 mmol/L) Serum lactate increases or remains within the severe group 
levels

Serum lactate decreases to mild or normal group levels
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forest, and autoencoders for prediction of serum lactate 
levels [17, 18]. This previous work has shown that an 
imputation strategy based on mean and indicator variables, 
where a Boolean variable is added to indicate whether a 
value is missing or not, provides the best performance. 
We therefore set out to evaluate this strategy first, and 
subsequently compare it with the most common strategy 
based on the mean value. The results showed that the indi-
cator imputation strategy provided better performance (in 
terms of AUC) than using the mean value alone. However, 
using an indicator variable degrades model interpretability 
and variable ranking, due to the increase in the number of 
Boolean variables (an indicator is added for each variable 
with missing values).

As such, we opted for a fill-forward imputation strategy 
applied to each ICU stay by forward propagation of all the 
valid measurements. This approach provided an optimal 
trade-off between model performance and interpretabil-
ity. Furthermore, we investigated whether a strategy based 
on clinical heuristics would further improve performance. 
Using this strategy, we defined an imputation method for 
each individual variable, as shown in Online Appendix 3. 
This strategy provided 2% (± 0.85) AUC better performance 
on average than using the mean value. As a result, after split-
ting datasets into train and test set, we used clinical heuris-
tics combined with the fill-forward method for the imputa-
tion of missing values. It should be noted that no lactate 
values were imputed.

2.7 � Experimental evaluation methodology

2.7.1 � Model development and experimentation

We evaluated the performance of three machine learning 
algorithms—logistic regression (LR), random forest (RF), 
and long short-term memory (LSTM). LR is an algorithm 
capable of predicting class probabilities using predictor 
variables, by adjusting the coefficients of the logit function, 
RF is an ensemble learning method constructing multiple 
decision trees and then producing class probabilities as out-
puts [19], while LSTM is a type of Deep Artificial Neural 
Network designed to learn temporal dependencies between 
variables and process longitudinal time-series data [20].

We spilt the data randomly into a derivation cohort (80%) 
and validation cohort (20%), where hyperparameters of all 
the models were optimized using random search on the vali-
dation set, detailed in Online Appendix 4. The final models 
were internally validated using stratified five-fold cross vali-
dation with 5 repetitions for both MIMIC-III and eICU-CRD 
datasets. For the external validation, we derived models on 
the eICU-CRD patient cohort and validated them on the 
MIMIC-III cohort.

2.7.2 � Performance evaluation

We assessed each model by computing the area under the 
receiver operator characteristic curve (AUC-ROCs) and 
the area under the precision-recall curve (AUPRCs), also 
called Average Precision (AP). We also provide additional 
performance metrics, including calibration, Positive Pre-
dictive Value (PPV), Negative Predictive Value (NPV), F-1 
score (showing the balance between PPV and sensitivity) 
and Matthews correlation coefficient MCC (used to measure 
the quality of classification between our algorithms) for each 
model. These performance metrics are detailed in Online 
Appendix 5, whereas calibration performance is detailed in 
Online Appendix 6.

2.7.3 � Model interpretability

We conducted a model interpretability analysis to under-
stand how the model ranked the importance of variables 
when predicting serum lactate trajectory. We used the SHAP 
(Shapley Additive exPlanations) method whose objective is 
to explain a prediction output of a machine learning model 
by computing the contribution of each variable to the pre-
diction [21]. The SHAP method computes Shapley values, 
where those variables with the largest absolute values are 
the most important. Based on Shapley values, we ranked 
each variable based on importance, including a ranking of 
the top ten variables.

3 � Results

3.1 � MIMIC‑III cohort

From the 61,532 overall admissions in MIMIC-III, 
12,502 admissions matched our selection criteria (11,083 
patients). The cohort selection diagram is shown in Online 
Appendix 3.

The MIMIC-III cohort had 29,337 serum lactate values 
recorded within the first 48 h of ICU admission with close to 
half in the normal group (46.9%) with the remaining values 
in the mild (37.7%) and severe groups (15.4%). The average 
patient age was 64.4 (± 16.6) with 42% female patients. The 
most common admission diagnosis was sepsis, followed by 
pneumonia, with an overall median length of stay of 4.2 
(IQR, [2.4–8.9]) days and mortality rate of 20.7% as shown 
in Table 2. Detailed patient characteristics and subgroup dif-
ferences for both MIMIC-III and eICU-CRD are shown in 
Online Appendix 3.

For the MIMIC-III cohort, positive outcomes (see 
Table 1) with respect to serum lactate trajectory were 
observed in 87.1% (n = 11,977) of subsequent lactate 
measurements in the normal group, 40.5% (n = 4,485) in 
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the mild group, and 39.5% (n = 1785) in the severe group. 
Figure 1 summarizes the performance of each model for 
each subgroup. We have also calculated precision-recall 
for different thresholds to devise curves that compare the 
performance of the models in the presence of imbalanced 
datasets, as is the case with the normal group where posi-
tive outcomes (87.1%) significantly exceed negative out-
comes (12.9%).

RF and LR performed similarly for the normal group with 
AUCs for both of 0.74 (95% CI 0.738–0.748 vs 0.732–740), 
while RF outperformed LR for the other two subgroups. The 
LSTM model performed best across all the three subgroups, 
achieving an AUC of 0.77 (95% CI 0.762–0.771) for the nor-
mal group, 0.77 (95% CI 0.768–0.772) for the mild group, 
and 0.85 (95% CI 0.840–0.851) for the severe group. The 
models were well calibrated for the mild and severe groups 

as shown in Online Appendix 6, while the normal group 
demonstrated less accurate calibration.

We also investigated the performance of the models when 
removing the patients with elective admission type. How-
ever, the results showed no statistically significant difference 
between the overall cohort and the cohort without elective 
admissions in terms of AUC performance.

3.2 � eICU‑CRD cohort

From the 200,859 admissions in the eICU-CRD, 17,452 
admissions (16,283 patients) matched our selection criteria, 
as detailed in the cohort selection diagram in Online Appen-
dix 3. The eICU-CRD study cohort had 39,389 serum lac-
tate values recorded within the first 48 h of ICU admission 
with 39.7% in the normal group, 35.4% in the mild group, 

Table 2   MIMIC-III cohort 
characteristics based on the 
initial lactate measurement

*Represents mean
**Represents median

Overall Normal Mild Severe

Age* (SD) 64.4 (± 16.6) 64.6 (± 16.5) 64.4 (± 16.7) 62.8 (± 17.0)
Gender (% male) 7211 (58%) 4502 (57%) 3777 (58%) 1380 (58%)
Length of Stay** (IQR) 4.2 ([2.4–8.9]) 4.7 ([2.7–9.2]) 4.5 ([2.5–9.4]) 5.1 ([2.6–11.5])
Mortality 20.7% 16.6% 21.5% 37.9%
Admission diagnosis Sepsis (5.0%)

Pneumonia (3.8%)
Sepsis (4.6%)
Pneumonia (4.3%)

Sepsis (5.3%)
Pneumonia (3.0%)

Sepsis (5.9%)
Abdominal pain
(2.2%)

Fig. 1   Performance of each model in the MIMIC-III cohort across the three patient subgroups. Top row represents AUC-ROC, while the bottom 
AU-PRC. Confidence intervals are shown in grey
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and 24.9% in the severe group. The average patient age was 
62.2 (± 16.1) with 45% female patients. The most common 
admission diagnosis was sepsis, followed by cardiac arrest, 
with a median length of stay of 3.5 (IQR, [2.0–6.6]) days and 
mortality rate of 15.4% as shown in Table 3.

For the eICU-CRD cohort, positive outcomes with 
respect to serum lactate trajectory were observed in 87.2% 
(n = 13,640) in the normal group, 40.4% (n = 5,638) in the 
mild group, and 36.0% (n = 3,528) in the severe group. Fig-
ure 2 summarizes the performance of each model for each 
subgroup. RF performed slightly better than LR for the mild 
group with an AUC of 0.73 (95% CI 0.723–0.731) versus 
an AUC of 0.69 (95% CI 0.683–0.693), while both models 
had similar performances for the other two subgroups. The 
LSTM model performed best across all the three subgroups, 

achieving an AUC of 0.72 (95% CI 0.707–0.724) for the nor-
mal group, 0.74 (95% CI 0.735–0.745) for the mild group, 
and 0.84 (95% CI 0.837–0.848) for the severe group.

3.3 � External validation of the eICU‑CRD model 
on the MIMIC‑III cohort

In addition to evaluating serum lactate deterioration pre-
diction within MIMIC-III and eICU-CRD individually, we 
conducted an external validation where a model derived 
from the eICU-CRD was validated on the MIMIC-III patient 
cohort. This was done to investigate the generalizability of 
our method on independent patient data and its potential 
utility as a clinical decision support tool. We followed the 
same cohort selection criteria and derived the model using 

Table 3   eICU-CRD cohort 
characteristics

*Represents mean
**Represents median

Overall Normal Mild Severe

Age* (SD) 62.2 (± 16.1) 61.9 (± 16.0) 62.3 (± 16.3) 61.8 (± 16.0)
Gender
(% male)

9520 (55%) 5142 (54%) 4772 (56%) 2649 (55%)

Length of Stay** (IQR) 3.5 ([2.0–6.6]) 3.7 ([2.1–6.7]) 3.7 ([2.1–6.9]) 3.8 ([2.1–7.2])
Mortality 15.4% 10.0% 15.3% 29.4%
Admission diagnosis Sepsis, pulmo-

nary (12.7%)
Cardiac arrest 

(8.1%)

Sepsis, pulmo-
nary (12.8%)

Cardiac arrest 
(7.5%)

Sepsis, pulmo-
nary (13.3%)

Cardiac arrest 
(8.7%)

Cardiac arrest (15.0%)
Sepsis, pulmonary
(11.3%)

Fig. 2   Performance of each model in the eICU-CRD cohort across the three patient subgroups. Top row represents AUC-ROC, while the bottom 
AU-PRC. Confidence intervals are shown in grey
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the eICU-CRD patient cohort, while the MIMIC-III cohort 
was used as a test set. The results are detailed in Fig. 3.

It is typically much more challenging to achieve simi-
lar results with external validation in comparison to inter-
nal validation. However, the performance of our method 
remained at similar levels to the internal studies. External 
validation results demonstrated deepened differences in per-
formance between baseline algorithms (LR) and machine 
learning approaches (LSTM and RF): the performance of 
LSTM was much closer to that of RF, outperforming it only 
in the normal group. While, in contrast to RF, the LSTM is 
equipped to capture temporal dependencies between serum 
lactate measurements, the majority of temporal sequences 
are quite short, especially in the severe group where serum 
lactate measurements are more frequent (see distribution of 
timing between subsequent lactate measurements in Online 
Appendix 3). LSTM and RF achieved AUCs of 0.74 and 
0.83 for the mild and severe groups respectively, with a 
lower performance for the normal group with AUCs of 0.70 
and 0.69.

3.4 � Sensitivity analyses

We also conducted sensitivity analyses using an alterna-
tive definition of serum lactate prediction outcome where 
we defined a change of at least 10% of serum lactate levels 
as an increase or decrease. The results of this analysis are 
detailed in Online Appendix 1, where the AUC of the LSTM 
model decreased to 0.76 (95% CI 0.755–0.766) from 0.77 

(95% CI 0.762–0.771) for the normal group; to 0.67 (95% CI 
0.661–0.672) from 0.77 (95% CI 0.768–0.772) for the mild 
group; and to 0.75 (95% CI 0.746–0.758) from 0.85 (95% 
CI 0.840–0.851) for the severe group. The changes in model 
performance are likely due to the fact that percent changes in 
serum lactate may be more sensitive than changes from one 
category to the next. This is not unlikely as these percentage 
changes in most instances require a smaller value change to 
register than do categorical changes.

The second sensitivity analysis focused on investigating 
whether the time difference between subsequent serum lac-
tate measurements has any effect on serum lactate deteriora-
tion prediction performance (detailed in Online Appendix 2). 
The results of this analysis showed a decrease in AUC per-
formance of the LSTM model for the mild and severe group 
to an AUC of 0.75 (95% CI 0.744–0.751) from 0.77 (95% CI 
0.768–0.772); and to 0.83 (95% CI 0.831–0.840) from 0.85 
(95% CI 0.840–0.851), respectively. For the normal group, 
the performance increased slightly to an AUC of 0.78 (95% 
CI 0.772–0.783) from 0.77 (95% CI 0.762–0.771). These 
changes are not statistically significant.

3.5 � Variable importance

As we derived three different models for each of the sub-
groups, we also calculated variable rankings separately 
for each model. Therefore, the top three ranked variables 
for the model of the normal group were the prior serum 
lactate, serum glucose, and anion gap; for the mild group 

Fig. 3   Performance of each model derived in the eICU-CRD cohort and externally validated on the MIMIC-III cohort across the three patient 
subgroups. Top row represents AUC-ROC, while the bottom AU-PRC
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model- prior serum lactate, respiratory rate, and serum glu-
cose; while, for the model of the severe group, the most 
important variables were prior serum lactate, prior arterial 
base excess, and Glasgow Coma Score value. A graphical 
representation of the top 10 variables for each model and 
their ranking is provided in Fig. 4.

4 � Discussion

The LSTM models were the most accurate in predicting 
deterioration of serum lactate values in all three serum lac-
tate level subgroups in the MIMIC-III cohort, with an AUC 
of 0.77 (95% CI 0.762–0.771) for the normal group, 0.77 
(95% CI 0.768–0.772) for the mild group, and 0.85 (95% CI 
0.840–0.851) for the severe group.

We observed different patterns of importance of the vari-
ables among the patient subgroups. For example, in the sub-
group with normal baseline serum lactate levels, the prior 
serum lactate measurement was an important predictor of 
deterioration of serum lactate values, followed by serum glu-
cose, anion gap, temperature and heart rate. The mild and 
severe groups additionally showed respiratory rate, GCS, 
and base excess as important variables in predicting serum 
lactate levels. Arterial pH, base excess, serum bicarbonate, 
and serum anion gap values all reflect the acid–base bal-
ance [22], while decreased partial pressure of carbon dioxide 
and increased respiratory rate are the results of physiologic 
responses to metabolic acidosis [23]. Urine output is a func-
tion of volume status, and renal function, and is affected by 
vascular perfusion to that organ, which in turn is intrinsically 
linked with tissue acidosis and lactate metabolism [24, 25]. 
Heart rate can be affected by many diverse factors and has 
been found to be independently associated with in-hospital 
mortality [26]. Elevated serum bilirubin could be a marker 
of hepatic metabolic dysfunction, commonly referred to as 
“shock liver”, which has also been found to be an important 
predictor of survival [27]. Moreover, lactate is also metabo-
lized by the liver so that hepatic dysfunction can indepen-
dently contribute to worsening hyperlactatemia [28, 29]. 

Clearly, it makes sense that these values would be and are 
strong determinants of the ongoing state of lactate levels. 
In addition to forming the basis of our predictive models, 
knowing the relative weights of these values in contributing 
to observed lactate levels is also useful to know for clinicians 
making these decisions. While severe changes in blood pres-
sure or pH are rather obvious indicators that another lactate 
value should be obtained, there is also a more subtle con-
stellation of changes in laboratory and vital sign values that 
should drive clinicians to consider rechecking lactate levels.

Clinical decision support (CDS) modalities must be accu-
rate, useful, and usable, and fit as seamlessly as possible 
into clinicians’ workflows. Lindsell et al. [30] recently stated 
that “Designing a useful AI tool in health care should begin 
with asking what system change the AI tool is expected to 
precipitate.” In this case, the change would consist of imple-
menting a tool that would optimize the number of serum 
lactate tests by reducing unnecessary testing while providing 
a reminder for necessary, and presumably useful, subsequent 
testing.

The net change in test frequency would not be an ade-
quate metric for evaluating the impact of this process change 
because any decrease in unnecessary testing could be offset 
by an increase in indicated testing. One metric that could 
be employed would be the relative (compared to baseline) 
percentage of repeat serum lactate values that demonstrated 
values that were clinically actionable (e.g., crossing the 
threshold from normal to mild, or from mild to high). But 
the critical metric would be whether the more focused iden-
tification of serum lactate anomalies contributes to improved 
outcomes in those patients who, at some time in their clinical 
course, have elevated serum lactate levels of some degree. 
The ultimate analysis of the value of such a CDS tool really 
requires a systems level approach that incorporates the clas-
sic ICU metrics of mortality and LOS, but also considers 
costs, fluid balance and renal function, impacts on work-
flows, and even the detection of adverse event outlier cases 
where the CDS leads the clinicians astray.

We would envision that the preliminary version of a 
CDS model would be updated every hour in order to make 

Fig. 4   Variable importance ranking for each LSTM-based model of the patient subgroups derived from the MIMIC-III cohort
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predictions employing events and values, newly captured 
over that interval. The algorithm would incorporate all 
pertinent variables in the interval and determine which 
contribute to the possible need for an additional serum lac-
tate sample, e.g., new evidence of sepsis (e.g. increasing 
SOFA score), increasing anion gap, or increasing respira-
tory rate. The specific element of ‘figuring out’ the new 
determination only applies to the LSTM based model in 
which newly available data can actually update the state 
of the neural network. Unlike the static algorithms of LR 
and RF, the LSTM algorithm would change dynamically 
during use so that any CDS tool based on this approach 
would require special Food and Drug Administration 
(FDA) approval. The FDA is currently studying what will 
be best practices in terms of approving such innovative 
yet evolving instruments in clinical care. Further advances 
in the quality of the CDS would involve such dynami-
cally evolving tools that learn continuously and provide 
automatic feedback to improve the model; learning how 
to best incorporate continuously tracked values such as 
HR and RR; identifying patient, disease, and unit level 
characteristics that could make the CDS a more precision 
tool; and the addition of new input variables as clinical 
medicine evolves.

Since all available data up to the time of prediction would 
be employed, even the fixed algorithms (LR, RF) would 
become potentially more accurate over time. For example, 
if there are two (or more) prior serum lactate values entered 
in the laboratory information system, then subsequent pre-
dictions should benefit from the creation of a potentially 
more robust trajectory than if only a single prior lactate is 
available (as is the case for this paper). Potentially, the AUCs 
generated in this instance would be at least as high, and 
likely higher than those we have reported, making the tool a 
progressively more accurate and useful one.

The relatively suboptimal model performance (AUC 
0.72–0.83) compared to other machine learning in health-
care publications (including ours), highlights the challenge 
of predicting the trajectory of serum lactate during critical 
illness. Features pertaining to the immunologic response that 
are specific to a patient, likely are only partially captured in 
the clinical data currently collected in the process of care. 
However, we assert that having a model with decent dis-
crimination to inform clinicians when to check serum lac-
tate is still an improvement compared to the variation across 
clinicians with regard to when serum lactate is ordered. We 
suspect the model performance can be improved by train-
ing on a larger dataset. An acceptable precision should be 
set if the intent is to reduce unnecessary testing and by how 
much. An acceptable recall should be set if the intent is to 
detect deterioration early and increase patient monitoring 
or move the patient to a higher level of care. Furthermore, 
inclusion of treatments administered would further improve 

the performance of the model and address some of the chal-
lenges with predicting the trajectory of serum lactate.

While our results are specifically calculated for serum 
lactate, the method could, upon appropriate contextual recal-
culation of the algorithm, be applied to other often repeated 
laboratory tests such as serum glucose or hemoglobin, simi-
larly alerting clinicians of the need to recheck a value on the 
basis of a predicted high probability of a clinically important 
and potentially actionable change in that value.

Our results suggest that it is feasible to predict future 
deterioration of serum lactate levels using routine clinical 
observations. However, there are several limitations. Vali-
dation studies on a target population are necessary before 
these models can safely be deployed in a clinical setting. The 
models also require regular recalibration to capture shifts in 
clinical practice and patient profiles over time. With these 
safeguards in place, our models could serve as a point-of-
care tool that assists in the prediction of serum lactate val-
ues. This could provide an early warning for potential dete-
rioration, prompting confirmatory testing of serum lactate 
levels (potentially automatically in the future) while at the 
same time reducing the number of unnecessary serum lac-
tate blood tests for stable patients, and enable clinicians to 
have a more personalized approach to the care of critically 
ill patients. The approach allows for clinicians to indepen-
dently determine the need for serum lactate values, so that 
it represents a supplement to, rather than a replacement of, 
clinical judgment.

To the best of our knowledge, this is the first study that 
attempts to use physiological and routinely measured mark-
ers to predict serum lactate deterioration. Strengths of this 
study include robust machine learning methodology able to 
capture temporal relationships between time-varying vari-
ables, while at the same time providing interpretability of 
the results. However, as this was a retrospective study, there 
were missing data for some of the variables. While our exter-
nal validation results are encouraging, the models trained on 
the MIMIC-III data were obtained from a single center in the 
United States, and its performance might not generalize to 
external populations; the eICU-CRD data were restricted to 
ICUs in the United States and might not generalize to global 
populations. Furthermore, a bias in the model might have 
been introduced by selective measurement of serum lactate. 
The ideal dataset to train the model would have serum lac-
tate drawn from every patient every hour. However, as such 
a dataset does not exist a prospective validation would be 
required to determine if such a bias exists and to what extent.

Our intention with this study was to provide insight into 
appropriate methodology and present a sound approach in 
predicting a biochemical marker for clinical application as 
opposed to a highly accurate ungeneralizable model.

Clinical prediction models demonstrate their true util-
ity only if they can positively impact clinical practice and 
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patient outcomes without unacceptably negative impacts 
on workflow and/or costs. Apart from validation studies as 
described above, prospective evaluation in a clinical setting 
is required to measure the impact such models have on clini-
cal decision making by nurses and physicians, and whether 
the subsequent changes in practice translate to desirable out-
comes related to number of serum lactate tests ordered, rates 
of organ failure, length of ICU stay, and hospital mortality. 
We provide the parameters used to develop the models in the 
supplementary information to enable replication and exten-
sion of this work in other patient populations.

5 � Conclusion

Compared to other clinical outcome prediction algorithms, 
our model performance seems suboptimal. Serum lactate is 
challenging to predict as lactate metabolism results from a 
complex interplay of factors pertaining to the patient, factors 
pertaining to the disease or injury, treatments, and patient 
response to treatment, and perhaps a signature genetically 
encoded host response. Omics data may be a proxy of the 
last element but is currently not captured in routine patient 
care. The difficulty with serum lactate prediction is in effect 
a missing data issue. Despite this, the LSTM model provided 
the highest performance in predicting lactate value deterio-
ration in critically ill patients, followed by RF and LR. This 
suggests that the use of machine learning might be a useful 
adjunct in helping to predict serum lactate deterioration in a 
manner that can inform clinician decision-making. Further 
studies are needed to evaluate its utility in clinical practice.
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