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Abstract— An important target for machine learning research 

is obtaining unbiased results, which require addressing bias that 

might be present in the data as well as the methodology. This is of 

utmost importance in medical applications of machine learning, 

where trained models should be unbiased so as to result in systems 

that are widely applicable, reliable and fair. Since bias can 

sometimes be introduced through the data itself, in this paper we 

investigate the presence of ethnoracial bias in patients’ clinical 

data. We focus primarily on vital signs and demographic 

information and classify patient ethnoraces in subsets of two from 

the three ethnoracial groups (African Americans, Caucasians, and 

Hispanics). Our results show that ethnorace can be identified in 

two out of three patients, setting the initial base for further 

investigation of the complex issue of ehtnoracial bias.  

Keywords—ethnoracial bias, clinical data, vital signs, machine 

learning 

I.  INTRODUCTION   

Machine learning (ML) research is becoming increasingly 
focused on addressing complex healthcare problems and as a 
result establishing ML systems for clinical decision support, 
including diagnostic, prognostic, and risk prediction. In this 
regard, ML applied to healthcare has already shown significant 
results [1] [2], which may develop beyond recommendations of 
clinical actions, towards full-scale assistance such as 
autonomous triage and patient stratification. 

However, the issue of bias in ML research is gaining 
increasing attention since the results are as reliable as the process 
is objective. This means that generated results should be 
unbiased throughout all the stages of the ML process: data 
collection, data preparation (from data selection to data 
preprocessing), model configuration, and model training and 
validation. There are two important aspects to consider: bias can 
be inherent in the data used in the research or stem from the ML 
methodology used in the research. Whether the bias is 
introduced from the data itself or in the development 
methodology, it presents a significant challenge in terms of 
trustworthiness of the models and worse can lead to unfair 
decision making, potentially harming disadvantaged groups, 
including gender, races and ethnicities. 

An important hindrance for increased application of ML 
models are bias conflicts which must be addressed. An opinion 
piece [3] states a “silent curriculum” in medical practice teaches 
students to differentiate between patients based on their race, 
saying, “among two patients in pain waiting in an emergency 

department examination room, the white one is more likely to 
get medications and the black one is more likely to be discharged 
with a note documenting narcotic-seeking behavior”.  

Biased medical practice results in ethnoracially unfair 
medical trials that produce datasets biased towards the majority 
population, e.g., imbalanced datasets with dominant 
representation of one ethnorace over the others [4] [5], or 
datasets obtained entirely from one ethnoracial group. The study 
in [6] shows that, even though ethnorace influences response to 
cancer treatments and outcomes, no ethnoracial statuses are 
recorded in majority of patients, and in cases of recorded 
ethnorace the highest represented ethnorace in melanoma, breast 
and lung cancer trials are White people (25.94%), followed by 
Asians (4.97%), and African Americans (1.08%), resulting in 
overrepresentation. Additionally, melanoma is one of the 
deadliest skin cancers known, yet melanoma datasets have 
shown underrepresentation of different ethnoraces [7]. 

 Working with biased datasets can influence development 
and produce biased ML applications. There have been many 
reports of detected racial bias in medical ML applications. The 
study in [8] shows patients being assigned a risk score depending 
on their skin color; namely, Black patients which are placed in 
the same risk category as a subset of White patients, health-wise 
had considerably worse symptoms. To add to the severity of the 
problem, the ML algorithm reduced the number of Black 
patients which should have been assigned additional care by 
more than half. Another example is an algorithm for diagnosis 
of diabetic retinopathy showing poor performance in 
populations living outside of the location where it was 
developed [9].  

Analysis of racial bias in ML applications can also be 
performed by observing the model’s performance over different 
ethnoraces [10]. In [11] the authors present their investigation 
into the performance of three severity scoring systems in four 
ethnoraces, focusing on hospital mortality; their results show all 
three models overestimated mortality across all ethnoraces, 
however, they conclude that severity scores have statistical bias 
since the overestimated mortalities are most notable with 
Hispanic and Black patients.  

From our investigation it appears there are no existing 
analysis that focus on detection of racial bias in clinical data 
itself and hence this is the focus of this paper. Typically, when 
approaching an ML problem, data preprocessing almost always 
includes removal of features which could potentially introduce 
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faulty or prejudicial bias in the results, such as gender and 
ethnorace. However, vital signs, including blood pressure, heart 
rate and oxygen saturation, are used in clinical data research, and 
considered unbiased. They are therefore presumed free of 
information which could be prejudicial in any way. From here, 
we raise the question, “Is it possible for data, supposedly 
stripped of biased information, to still incorporate bias in the 
results?”. Therefore, our aim is finding out if we can detect bias 
in clinical data, that is, identify ethnicity and race based on vital 
signs and demographic information only. 

The rest of the paper is organized as follows. In section II we 
describe the dataset, our data preparation process, and our 
approach to the problem. In section III we present our results, 
whereas in section IV we discuss them. Section V concludes this 
paper. 

II. METHODOLOGY 

A. Dataset 

The dataset used for this paper, eICU Collaborative Research 
Database (eICU-CRD) [5], contains extensive records of 
200,859 patient admissions in the ICU. In this research we focus 
on the patient’s general information (PGI) and patient’s vital 
signs measurements (PVS), and are listed along with their units 
in Table I. During the data preparation process, we consider 
patients under the age of 89, where all PGI of interest and PVS 
are present (so called complete case analysis). The PGI we use 
are patient’s age, height, admission weight, and discharge 
weight, whereas the PVS we use are statistical features (mean, 
minimum, maximum, variance, and standard deviation) 
extrapolated from the patient’s heart rate, oxygen saturation, 
respiration, and blood pressure (systolic, diastolic, and mean) 
within the first 24 hours of admission. Patients with 
undocumented or undefined ethnorace, and patients missing PGI 
were excluded from this analysis. 

After applying the selection criteria, the dataset contained 
small pools of patients from certain ethnoracial groups (such as 
Asian and Native American). Therefore, for our analysis we 
selected only the three predominant ethnoraces present in the 
remaining dataset, namely Caucasian, African American and 
Hispanic. The distribution of patients per ethnoracial group is 
given in Fig. 1. As the chart shows, the resulting dataset is highly 
imbalanced, in favor of Caucasians. The African American and 

Hispanic ethnoraces have a significantly lower number of 
patients, with the Hispanic group being the smallest. 

B. Model development and validation 

We classify patients’ ethnoraces in subsets of two from the 
three ethnoraces we have, i.e., we have three distinct 
comparative tests, Caucasian vs African American, African 
American vs Hispanic, and Caucasian vs Hispanic patients. For 
each comparative test, we evaluate the performance of two ML 
algorithms, namely logistic regression (LR) and XGBoost. LR 
predicts the probability of dichotomous target variables. 
XGBoost is an efficient implementation of the gradient boosted 
trees, which makes predictions by ensembling new models to 
correct the errors made by existing models, until no further 
improvements can be made. The evaluation of the models is 
performed internally using stratified five-fold cross validation. 
In five-fold cross validation, four folds are used for the model 
training, whereas the remaining fold is used for testing the 
model’s performance. We use stratified cross validation in order 
to maintain the original classes’ distribution.  

The assessment of our models is performed by computing 
the area under the receiver operator characteristic curve (AUC-
ROC), the area under the precision-recall curve (AU-PRC), and 
additional metrics, including positive predictive value (PPV), 
negative predictive value (NPV), F1 score, and recall for each 
model. The AUC-ROC curve shows the trade-off between true 
positive rate (TPR) and false positive rate (FPR). TPR (also 
known as recall and sensitivity) is the proportion of samples 
correctly predicted as positives out of all positive observations. 
FPR is the proportion of samples incorrectly predicted as 
positives out of all negative observations. Classifiers with curves 
closer to the top-left corner have better performance compared 
to classifiers with a curve closer to the 45-degree diagonal. The 
AU-PRC shows the trade-off between precision or PPV and 
TPR. PPV represents the proportion of samples predicted 
correctly as positives out of all samples predicted as positives. 
NPV represents the proportion of samples correctly predicted as 
negatives and all samples predicted as negatives. F1 score is the 
harmonic mean of precision and recall.  

III. EXPERIMENTAL RESULTS 

Table II shows the difference between each pair of 
ethnoraces (classes) in our dataset. The ratios provided are 
important indicators when analyzing the performance of our 
models, since the AU-PRCs obtained are influenced by data 

 
Fig. 1 Patient number per ethnorace 
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TABLE I DATASET: VARIABLES AND UNITS 

Variable Unit 

Patient’s general information 

Age years 

Height cm 

Admission Weight kg 

Discharge Weight kg 

Patient’s vital signs 

Heart Rate bpm 

Oxygen Saturation % 

Respiratory Rate insp/min 

Blood Pressure (systolic, diastolic, 
mean) 

mmHg 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.09.01.21262949doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.01.21262949
http://creativecommons.org/licenses/by-nc-nd/4.0/


ratio. We can see that the highest data imbalance occurs between 
Caucasians vs Hispanics, whereas the lowest data imbalance can 
be seen in African Americans vs Hispanics.  

Our results consist of two sets: first, using imbalanced data 
in the training process, and second, using balanced data in the 
training process. In both cases we maintained the original class 
ration for the test data. 

A. Imbalanced train data 

Initially, we used an imbalanced dataset, both for training 
and testing the models. All three comparative tests showed the 
model was biased in favor of the majority class. Since the ratio 
between African Americans and Hispanics is the lowest 
imbalance ratio in our dataset, we decided to show the 
performance of the ML models trained on the original 
distribution of data from these two classes. 

TABLE III shows confusion matrices taken from a random fold 
for LR [12] and XGBoost [13], and for both classifiers most of 
the patients are classified as part of the majority class. Therefore, 
these results clearly illustrate that the imbalance in the data made 
the models biased towards the majority class. Caucasian patients 
are 11.42 times more than African American patients and 37.9 
times more than Hispanics, which further accentuates the bias 
towards Caucasians, when using the imbalanced dataset for 
training. 

B. Balanced train data 

Since the imbalanced dataset proved to be biased towards the 
majority class and resulted in models placing most of the 
samples in the dominant class, understandably there was low 
model performance. In order to give the models a learning 
chance, we decided to correct the imbalance present in the 
dataset, during the training process. To achieve this, we 
randomly under sampled the majority class (using 
RandomUndersample [14]) in the training data, as to balance the 
train dataset. We train the classifiers with the balanced data, 
while the test data for each fold keeps the original distribution in 
order to evaluate the performance of each model on real data. 

Using the balanced train data, we illustrate results from three 
comparative binary classifications between each two ethnoracial 
groups – firstly, we have Caucasians vs African Americans, next 
we have African Americans vs Hispanics, and lastly, we have 
Caucasians vs Hispanics.  

The results of each comparative test for each classifier are 
summarized in TABLE IV, TABLE V, and TABLE VI. 95% confidence 
intervals are provided in the brackets. Additionally, the AUC-
ROC and AU-PRC are illustrated in Fig. 2, where the 95% 
confidence intervals for the classifiers are shown in their 
corresponding coloring with lower opacity.  

IV. DISCUSSION 

From the results, it can be observed that XGBoost performed 
best in classifying Caucasians vs African Americans, whereas 
the other two comparative tests give weaker results. For both 
African Americans vs Hispanics and Caucasians vs Hispanics, 
XGBoost shows significant similarity in the AUC-ROC curve. 
On the other hand, LR has the worst performance for Caucasians 
vs African Americans, and the best performance for Caucasians 
vs Hispanics. This outcome is understandable, because LR is 
known to operate well even with small sample sizes, which is 
the case in the last comparison. However, from the confidence 
intervals for both classifiers along all comparisons we can see 
that XGBoost has a narrower range around the estimate, which 
means that the estimate provided by XGBoost is more stable 
compared to the estimate given by LR.  

Observing the additional metrics obtained in the experiments 
we can see that throughout all of them the confidence intervals 
are narrower for XGBoost. 

The PPVs for all the experiments are low. However, the 
values for the recall (which show us the number of correctly 

TABLE II PATIENT NUMBER RATIO BETWEEN MAJORITY AND MINORITY 

CLASSES IN EACH COMPARATIVE TEST 

Dataset: Class Distribution 

Majority class Minority class Patient Number Ratio 

Caucasian African American 11.42 

African American Hispanic 3.32 

Caucasian Hispanic 37.90 

 

TABLE IV CAUCASIAN VS AFRICAN AMERICAN - RESULTS. CONFIDENCE 

INTERVALS PROVIDED IN BRACKETS. 

Metric LR XGBoost 

AUC 0.583 [0.552 – 0.614] 0.726 [0.703 – 0.749] 

PPV 0.121 [0.114 – 0.128] 0.138 [0.134 – 0.142] 

Recall 0.558 [0.501 – 0.615] 0.640 [0.599 – 0.681] 

NPV 0.944 [0.938 – 0.950] 0.954 [0.950 – 0.958] 

F1 0.199 [0.186 – 0.212] 0.227 [0.220 – 0.234] 

TABLE V AFRICAN AMERICAN VS HISPANIC - RESULTS. CONFIDENCE 

INTERVALS PROVIDED IN BRACKETS. 

Metric LR XGBoost 

AUC 0.671 [0.621 – 0.721] 0.675 [0.634 – 0.716] 

PPV 0.317 [0.292 – 0.342] 0.310 [0.291 – 0.329] 

Recall 0.601 [0.535 – 0.667] 0.594 [0.530 – 0.658] 

NPV 0.836 [0.816 – 0.856] 0.833 [0.811 – 0.855] 

F1 0.414 [0.379 – 0.449] 0.407 [0.377 – 0.437] 

TABLE VI CAUCASIAN VS HISPANIC - RESULTS. CONFIDENCE INTERVALS 

PROVIDED IN BRACKETS. 

Metric LR XGBoost 

AUC 0.737 [0.693 – 0.781] 0.648 [0.636 – 0.660] 

PPV 0.045 [0.040 – 0.050] 0.044 [0.043 – 0.045] 

Recall 0.602 [0.524 – 0.680] 0.627 [0.616 – 0.638] 

NPV 0.985 [0.982 – 0.988] 0.985 [0.984 – 0.986] 

F1 0.083 [0.073 – 0.093] 0.081 [0.080 – 0.082] 

 

TABLE III AFRICAN AMERICAN VS HISPANIC - CONFUSION MATRICES. 

TAKEN FROM A RANDOMLY SELECTED FOLD. 

African American vs Hispanic 

M
o
d
e
ls

 

Logistic Regression XGBoost 

Predicted 

A
c
tu

a
l 316 9 304 21 

96 2 87 11 
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returned patients divided by the number of patients which should 
have been returned) show that on average two thirds of patients 
are correctly classified, as is further illustrated with the 
randomly selected confusion matrices provided in TABLE VII. 

These results show that patient’s general information and 
vital signs could include ethnoracial bias. Perhaps this bias arises 
from the bias present in medical practice, e.g., Black or Hispanic 
patients admitted to the ICU might be in a worse condition than 
White patients. Another potential reason can be similarities in 
general information and biological markers (e.g., height, weight, 
heart rate) of patients that represent an ethnoracial group.  

However, these results are not conclusive. Ethnoraces can be 
difficult to identify due to interracial marriages, and we cannot 
claim with certainty that Caucasians “misclassified” as African 
Americans, are not biracial or even multiracial. Furthermore, the 

eICU dataset consists of patients with various diagnosis, e.g., 
rhythm disturbances, pneumonia, aneurysms, and so on, and 
every diagnosis influences different vital signs in different ways. 
Additionally, the results are obtained on a small number of 
African American and Hispanic patients, which might not give 
an accurate representation on these ethnoracial groups. 

V. CONCLUSION 

With the increased number of ML applications in medicine 
it is important to ensure the developed models are unbiased and 
perform correctly in spite of a patient’s ethnorace. Since bias can 
be introduced through data, we investigated the presence of 
ethnoracial bias in clinical data; more specifically, we analysed 
general information and vital signs of patients from three 
ethnoraces to determine whether ML models can detect 
biological markers representative of an ethnorace. We compared 
the performance of two ML algorithms in comparing two by two 
ethnoraces in balanced train data. Our results show that two out 
of three patients in all experiments are placed in the correct 
ethnorace; however, the sample size of the observed ethnoraces 
as well as the fluid concept of ethnorace indicate the need for 
further investigation. 
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Caucasian vs 

African American 
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Caucasian vs 
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 Predicted 

A
c
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a
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c
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